| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qshash.1 | ⊢ ( 𝜑  →   ∼   Er  𝐴 ) | 
						
							| 2 |  | qshash.2 | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 3 |  | erex | ⊢ (  ∼   Er  𝐴  →  ( 𝐴  ∈  Fin  →   ∼   ∈  V ) ) | 
						
							| 4 | 1 2 3 | sylc | ⊢ ( 𝜑  →   ∼   ∈  V ) | 
						
							| 5 | 1 4 | uniqs2 | ⊢ ( 𝜑  →  ∪  ( 𝐴  /   ∼  )  =  𝐴 ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( 𝜑  →  ( ♯ ‘ ∪  ( 𝐴  /   ∼  ) )  =  ( ♯ ‘ 𝐴 ) ) | 
						
							| 7 |  | pwfi | ⊢ ( 𝐴  ∈  Fin  ↔  𝒫  𝐴  ∈  Fin ) | 
						
							| 8 | 2 7 | sylib | ⊢ ( 𝜑  →  𝒫  𝐴  ∈  Fin ) | 
						
							| 9 | 1 | qsss | ⊢ ( 𝜑  →  ( 𝐴  /   ∼  )  ⊆  𝒫  𝐴 ) | 
						
							| 10 | 8 9 | ssfid | ⊢ ( 𝜑  →  ( 𝐴  /   ∼  )  ∈  Fin ) | 
						
							| 11 |  | elpwi | ⊢ ( 𝑥  ∈  𝒫  𝐴  →  𝑥  ⊆  𝐴 ) | 
						
							| 12 |  | ssfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝑥  ⊆  𝐴 )  →  𝑥  ∈  Fin ) | 
						
							| 13 | 12 | ex | ⊢ ( 𝐴  ∈  Fin  →  ( 𝑥  ⊆  𝐴  →  𝑥  ∈  Fin ) ) | 
						
							| 14 | 2 11 13 | syl2im | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝒫  𝐴  →  𝑥  ∈  Fin ) ) | 
						
							| 15 | 14 | ssrdv | ⊢ ( 𝜑  →  𝒫  𝐴  ⊆  Fin ) | 
						
							| 16 | 9 15 | sstrd | ⊢ ( 𝜑  →  ( 𝐴  /   ∼  )  ⊆  Fin ) | 
						
							| 17 |  | qsdisj2 | ⊢ (  ∼   Er  𝐴  →  Disj  𝑥  ∈  ( 𝐴  /   ∼  ) 𝑥 ) | 
						
							| 18 | 1 17 | syl | ⊢ ( 𝜑  →  Disj  𝑥  ∈  ( 𝐴  /   ∼  ) 𝑥 ) | 
						
							| 19 | 10 16 18 | hashuni | ⊢ ( 𝜑  →  ( ♯ ‘ ∪  ( 𝐴  /   ∼  ) )  =  Σ 𝑥  ∈  ( 𝐴  /   ∼  ) ( ♯ ‘ 𝑥 ) ) | 
						
							| 20 | 6 19 | eqtr3d | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐴 )  =  Σ 𝑥  ∈  ( 𝐴  /   ∼  ) ( ♯ ‘ 𝑥 ) ) |