Metamath Proof Explorer


Theorem qsinxp

Description: Restrict the equivalence relation in a quotient set to the base set. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Assertion qsinxp ( ( 𝑅𝐴 ) ⊆ 𝐴 → ( 𝐴 / 𝑅 ) = ( 𝐴 / ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) )

Proof

Step Hyp Ref Expression
1 ecinxp ( ( ( 𝑅𝐴 ) ⊆ 𝐴𝑥𝐴 ) → [ 𝑥 ] 𝑅 = [ 𝑥 ] ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) )
2 1 eqeq2d ( ( ( 𝑅𝐴 ) ⊆ 𝐴𝑥𝐴 ) → ( 𝑦 = [ 𝑥 ] 𝑅𝑦 = [ 𝑥 ] ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) )
3 2 rexbidva ( ( 𝑅𝐴 ) ⊆ 𝐴 → ( ∃ 𝑥𝐴 𝑦 = [ 𝑥 ] 𝑅 ↔ ∃ 𝑥𝐴 𝑦 = [ 𝑥 ] ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) )
4 3 abbidv ( ( 𝑅𝐴 ) ⊆ 𝐴 → { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = [ 𝑥 ] 𝑅 } = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = [ 𝑥 ] ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) } )
5 df-qs ( 𝐴 / 𝑅 ) = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = [ 𝑥 ] 𝑅 }
6 df-qs ( 𝐴 / ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = [ 𝑥 ] ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) }
7 4 5 6 3eqtr4g ( ( 𝑅𝐴 ) ⊆ 𝐴 → ( 𝐴 / 𝑅 ) = ( 𝐴 / ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) )