Step |
Hyp |
Ref |
Expression |
1 |
|
ecinxp |
⊢ ( ( ( 𝑅 “ 𝐴 ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → [ 𝑥 ] 𝑅 = [ 𝑥 ] ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) |
2 |
1
|
eqeq2d |
⊢ ( ( ( 𝑅 “ 𝐴 ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 = [ 𝑥 ] 𝑅 ↔ 𝑦 = [ 𝑥 ] ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
3 |
2
|
rexbidva |
⊢ ( ( 𝑅 “ 𝐴 ) ⊆ 𝐴 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] 𝑅 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
4 |
3
|
abbidv |
⊢ ( ( 𝑅 “ 𝐴 ) ⊆ 𝐴 → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] 𝑅 } = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) } ) |
5 |
|
df-qs |
⊢ ( 𝐴 / 𝑅 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] 𝑅 } |
6 |
|
df-qs |
⊢ ( 𝐴 / ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) } |
7 |
4 5 6
|
3eqtr4g |
⊢ ( ( 𝑅 “ 𝐴 ) ⊆ 𝐴 → ( 𝐴 / 𝑅 ) = ( 𝐴 / ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |