| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ecinxp | ⊢ ( ( ( 𝑅  “  𝐴 )  ⊆  𝐴  ∧  𝑥  ∈  𝐴 )  →  [ 𝑥 ] 𝑅  =  [ 𝑥 ] ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) ) | 
						
							| 2 | 1 | eqeq2d | ⊢ ( ( ( 𝑅  “  𝐴 )  ⊆  𝐴  ∧  𝑥  ∈  𝐴 )  →  ( 𝑦  =  [ 𝑥 ] 𝑅  ↔  𝑦  =  [ 𝑥 ] ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 3 | 2 | rexbidva | ⊢ ( ( 𝑅  “  𝐴 )  ⊆  𝐴  →  ( ∃ 𝑥  ∈  𝐴 𝑦  =  [ 𝑥 ] 𝑅  ↔  ∃ 𝑥  ∈  𝐴 𝑦  =  [ 𝑥 ] ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 4 | 3 | abbidv | ⊢ ( ( 𝑅  “  𝐴 )  ⊆  𝐴  →  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  [ 𝑥 ] 𝑅 }  =  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  [ 𝑥 ] ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) } ) | 
						
							| 5 |  | df-qs | ⊢ ( 𝐴  /  𝑅 )  =  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  [ 𝑥 ] 𝑅 } | 
						
							| 6 |  | df-qs | ⊢ ( 𝐴  /  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) )  =  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  [ 𝑥 ] ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) } | 
						
							| 7 | 4 5 6 | 3eqtr4g | ⊢ ( ( 𝑅  “  𝐴 )  ⊆  𝐴  →  ( 𝐴  /  𝑅 )  =  ( 𝐴  /  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) ) ) |