Step |
Hyp |
Ref |
Expression |
1 |
|
qsnzr.q |
⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) |
2 |
|
qsnzr.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
qsnzr.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
4 |
|
qsnzr.z |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
5 |
|
qsnzr.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
6 |
|
qsnzr.2 |
⊢ ( 𝜑 → 𝐼 ≠ 𝐵 ) |
7 |
|
eqid |
⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) |
8 |
1 7
|
qusring |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) → 𝑄 ∈ Ring ) |
9 |
3 5 8
|
syl2anc |
⊢ ( 𝜑 → 𝑄 ∈ Ring ) |
10 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
11 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
12 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
13 |
11 12
|
grpinvid |
⊢ ( 𝑅 ∈ Grp → ( ( invg ‘ 𝑅 ) ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
14 |
3 10 13
|
3syl |
⊢ ( 𝜑 → ( ( invg ‘ 𝑅 ) ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
15 |
14
|
oveq1d |
⊢ ( 𝜑 → ( ( ( invg ‘ 𝑅 ) ‘ ( 0g ‘ 𝑅 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
16 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
17 |
3 10
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
18 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
19 |
2 18
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
20 |
3 19
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
21 |
2 16 11 17 20
|
grplidd |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
22 |
15 21
|
eqtrd |
⊢ ( 𝜑 → ( ( ( invg ‘ 𝑅 ) ‘ ( 0g ‘ 𝑅 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
23 |
5
|
2idllidld |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
24 |
2 18
|
pridln1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝐼 ≠ 𝐵 ) → ¬ ( 1r ‘ 𝑅 ) ∈ 𝐼 ) |
25 |
3 23 6 24
|
syl3anc |
⊢ ( 𝜑 → ¬ ( 1r ‘ 𝑅 ) ∈ 𝐼 ) |
26 |
22 25
|
eqneltrd |
⊢ ( 𝜑 → ¬ ( ( ( invg ‘ 𝑅 ) ‘ ( 0g ‘ 𝑅 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ 𝐼 ) |
27 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) ( 𝑅 ~QG 𝐼 ) ( 0g ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
28 |
|
lidlnsg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
29 |
3 23 28
|
syl2anc |
⊢ ( 𝜑 → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
30 |
|
nsgsubg |
⊢ ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
31 |
29 30
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
32 |
2
|
subgss |
⊢ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → 𝐼 ⊆ 𝐵 ) |
33 |
31 32
|
syl |
⊢ ( 𝜑 → 𝐼 ⊆ 𝐵 ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) ( 𝑅 ~QG 𝐼 ) ( 0g ‘ 𝑅 ) ) → 𝐼 ⊆ 𝐵 ) |
35 |
|
eqid |
⊢ ( 𝑅 ~QG 𝐼 ) = ( 𝑅 ~QG 𝐼 ) |
36 |
2 35
|
eqger |
⊢ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → ( 𝑅 ~QG 𝐼 ) Er 𝐵 ) |
37 |
31 36
|
syl |
⊢ ( 𝜑 → ( 𝑅 ~QG 𝐼 ) Er 𝐵 ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) ( 𝑅 ~QG 𝐼 ) ( 0g ‘ 𝑅 ) ) → ( 𝑅 ~QG 𝐼 ) Er 𝐵 ) |
39 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) ( 𝑅 ~QG 𝐼 ) ( 0g ‘ 𝑅 ) ) → ( 1r ‘ 𝑅 ) ( 𝑅 ~QG 𝐼 ) ( 0g ‘ 𝑅 ) ) |
40 |
38 39
|
ersym |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) ( 𝑅 ~QG 𝐼 ) ( 0g ‘ 𝑅 ) ) → ( 0g ‘ 𝑅 ) ( 𝑅 ~QG 𝐼 ) ( 1r ‘ 𝑅 ) ) |
41 |
2 12 16 35
|
eqgval |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ⊆ 𝐵 ) → ( ( 0g ‘ 𝑅 ) ( 𝑅 ~QG 𝐼 ) ( 1r ‘ 𝑅 ) ↔ ( ( 0g ‘ 𝑅 ) ∈ 𝐵 ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ∧ ( ( ( invg ‘ 𝑅 ) ‘ ( 0g ‘ 𝑅 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ 𝐼 ) ) ) |
42 |
41
|
biimpa |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ⊆ 𝐵 ) ∧ ( 0g ‘ 𝑅 ) ( 𝑅 ~QG 𝐼 ) ( 1r ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ∈ 𝐵 ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ∧ ( ( ( invg ‘ 𝑅 ) ‘ ( 0g ‘ 𝑅 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ 𝐼 ) ) |
43 |
42
|
simp3d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ⊆ 𝐵 ) ∧ ( 0g ‘ 𝑅 ) ( 𝑅 ~QG 𝐼 ) ( 1r ‘ 𝑅 ) ) → ( ( ( invg ‘ 𝑅 ) ‘ ( 0g ‘ 𝑅 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ 𝐼 ) |
44 |
27 34 40 43
|
syl21anc |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) ( 𝑅 ~QG 𝐼 ) ( 0g ‘ 𝑅 ) ) → ( ( ( invg ‘ 𝑅 ) ‘ ( 0g ‘ 𝑅 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ 𝐼 ) |
45 |
26 44
|
mtand |
⊢ ( 𝜑 → ¬ ( 1r ‘ 𝑅 ) ( 𝑅 ~QG 𝐼 ) ( 0g ‘ 𝑅 ) ) |
46 |
37 20
|
erth |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) ( 𝑅 ~QG 𝐼 ) ( 0g ‘ 𝑅 ) ↔ [ ( 1r ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) ) ) |
47 |
45 46
|
mtbid |
⊢ ( 𝜑 → ¬ [ ( 1r ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) ) |
48 |
47
|
neqned |
⊢ ( 𝜑 → [ ( 1r ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) ≠ [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) ) |
49 |
1 7 18
|
qus1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) → ( 𝑄 ∈ Ring ∧ [ ( 1r ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = ( 1r ‘ 𝑄 ) ) ) |
50 |
3 5 49
|
syl2anc |
⊢ ( 𝜑 → ( 𝑄 ∈ Ring ∧ [ ( 1r ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = ( 1r ‘ 𝑄 ) ) ) |
51 |
50
|
simprd |
⊢ ( 𝜑 → [ ( 1r ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = ( 1r ‘ 𝑄 ) ) |
52 |
1 11
|
qus0 |
⊢ ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) → [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = ( 0g ‘ 𝑄 ) ) |
53 |
29 52
|
syl |
⊢ ( 𝜑 → [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = ( 0g ‘ 𝑄 ) ) |
54 |
48 51 53
|
3netr3d |
⊢ ( 𝜑 → ( 1r ‘ 𝑄 ) ≠ ( 0g ‘ 𝑄 ) ) |
55 |
|
eqid |
⊢ ( 1r ‘ 𝑄 ) = ( 1r ‘ 𝑄 ) |
56 |
|
eqid |
⊢ ( 0g ‘ 𝑄 ) = ( 0g ‘ 𝑄 ) |
57 |
55 56
|
isnzr |
⊢ ( 𝑄 ∈ NzRing ↔ ( 𝑄 ∈ Ring ∧ ( 1r ‘ 𝑄 ) ≠ ( 0g ‘ 𝑄 ) ) ) |
58 |
9 54 57
|
sylanbrc |
⊢ ( 𝜑 → 𝑄 ∈ NzRing ) |