Metamath Proof Explorer


Theorem qsqcl

Description: The square of a rational is rational. (Contributed by Stefan O'Rear, 15-Sep-2014)

Ref Expression
Assertion qsqcl ( 𝐴 ∈ ℚ → ( 𝐴 ↑ 2 ) ∈ ℚ )

Proof

Step Hyp Ref Expression
1 qcn ( 𝐴 ∈ ℚ → 𝐴 ∈ ℂ )
2 sqval ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) )
3 1 2 syl ( 𝐴 ∈ ℚ → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) )
4 qmulcl ( ( 𝐴 ∈ ℚ ∧ 𝐴 ∈ ℚ ) → ( 𝐴 · 𝐴 ) ∈ ℚ )
5 4 anidms ( 𝐴 ∈ ℚ → ( 𝐴 · 𝐴 ) ∈ ℚ )
6 3 5 eqeltrd ( 𝐴 ∈ ℚ → ( 𝐴 ↑ 2 ) ∈ ℚ )