| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0re |
⊢ 0 ∈ ℝ |
| 2 |
|
ltnle |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 ↔ ¬ 𝐴 ≤ 0 ) ) |
| 3 |
1 2
|
mpan |
⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 ↔ ¬ 𝐴 ≤ 0 ) ) |
| 4 |
|
qbtwnre |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ∃ 𝑥 ∈ ℚ ( 0 < 𝑥 ∧ 𝑥 < 𝐴 ) ) |
| 5 |
1 4
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ∃ 𝑥 ∈ ℚ ( 0 < 𝑥 ∧ 𝑥 < 𝐴 ) ) |
| 6 |
5
|
ex |
⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 → ∃ 𝑥 ∈ ℚ ( 0 < 𝑥 ∧ 𝑥 < 𝐴 ) ) ) |
| 7 |
|
qre |
⊢ ( 𝑥 ∈ ℚ → 𝑥 ∈ ℝ ) |
| 8 |
|
ltnsym |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐴 < 𝑥 → ¬ 𝑥 < 𝐴 ) ) |
| 9 |
8
|
con2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑥 < 𝐴 → ¬ 𝐴 < 𝑥 ) ) |
| 10 |
7 9
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℚ ) → ( 𝑥 < 𝐴 → ¬ 𝐴 < 𝑥 ) ) |
| 11 |
10
|
anim2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℚ ) → ( ( 0 < 𝑥 ∧ 𝑥 < 𝐴 ) → ( 0 < 𝑥 ∧ ¬ 𝐴 < 𝑥 ) ) ) |
| 12 |
11
|
reximdva |
⊢ ( 𝐴 ∈ ℝ → ( ∃ 𝑥 ∈ ℚ ( 0 < 𝑥 ∧ 𝑥 < 𝐴 ) → ∃ 𝑥 ∈ ℚ ( 0 < 𝑥 ∧ ¬ 𝐴 < 𝑥 ) ) ) |
| 13 |
6 12
|
syld |
⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 → ∃ 𝑥 ∈ ℚ ( 0 < 𝑥 ∧ ¬ 𝐴 < 𝑥 ) ) ) |
| 14 |
3 13
|
sylbird |
⊢ ( 𝐴 ∈ ℝ → ( ¬ 𝐴 ≤ 0 → ∃ 𝑥 ∈ ℚ ( 0 < 𝑥 ∧ ¬ 𝐴 < 𝑥 ) ) ) |
| 15 |
|
rexanali |
⊢ ( ∃ 𝑥 ∈ ℚ ( 0 < 𝑥 ∧ ¬ 𝐴 < 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ ℚ ( 0 < 𝑥 → 𝐴 < 𝑥 ) ) |
| 16 |
14 15
|
imbitrdi |
⊢ ( 𝐴 ∈ ℝ → ( ¬ 𝐴 ≤ 0 → ¬ ∀ 𝑥 ∈ ℚ ( 0 < 𝑥 → 𝐴 < 𝑥 ) ) ) |
| 17 |
16
|
con4d |
⊢ ( 𝐴 ∈ ℝ → ( ∀ 𝑥 ∈ ℚ ( 0 < 𝑥 → 𝐴 < 𝑥 ) → 𝐴 ≤ 0 ) ) |
| 18 |
17
|
imp |
⊢ ( ( 𝐴 ∈ ℝ ∧ ∀ 𝑥 ∈ ℚ ( 0 < 𝑥 → 𝐴 < 𝑥 ) ) → 𝐴 ≤ 0 ) |
| 19 |
18
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀ 𝑥 ∈ ℚ ( 0 < 𝑥 → 𝐴 < 𝑥 ) ) → 𝐴 ≤ 0 ) |
| 20 |
|
letri3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐴 = 0 ↔ ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐴 ) ) ) |
| 21 |
1 20
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 = 0 ↔ ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐴 ) ) ) |
| 22 |
21
|
rbaibd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 = 0 ↔ 𝐴 ≤ 0 ) ) |
| 23 |
22
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀ 𝑥 ∈ ℚ ( 0 < 𝑥 → 𝐴 < 𝑥 ) ) → ( 𝐴 = 0 ↔ 𝐴 ≤ 0 ) ) |
| 24 |
19 23
|
mpbird |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀ 𝑥 ∈ ℚ ( 0 < 𝑥 → 𝐴 < 𝑥 ) ) → 𝐴 = 0 ) |