Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
⊢ 0 ∈ ℝ |
2 |
|
ltnle |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 ↔ ¬ 𝐴 ≤ 0 ) ) |
3 |
1 2
|
mpan |
⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 ↔ ¬ 𝐴 ≤ 0 ) ) |
4 |
|
qbtwnre |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ∃ 𝑥 ∈ ℚ ( 0 < 𝑥 ∧ 𝑥 < 𝐴 ) ) |
5 |
1 4
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ∃ 𝑥 ∈ ℚ ( 0 < 𝑥 ∧ 𝑥 < 𝐴 ) ) |
6 |
5
|
ex |
⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 → ∃ 𝑥 ∈ ℚ ( 0 < 𝑥 ∧ 𝑥 < 𝐴 ) ) ) |
7 |
|
qre |
⊢ ( 𝑥 ∈ ℚ → 𝑥 ∈ ℝ ) |
8 |
|
ltnsym |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐴 < 𝑥 → ¬ 𝑥 < 𝐴 ) ) |
9 |
8
|
con2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑥 < 𝐴 → ¬ 𝐴 < 𝑥 ) ) |
10 |
7 9
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℚ ) → ( 𝑥 < 𝐴 → ¬ 𝐴 < 𝑥 ) ) |
11 |
10
|
anim2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℚ ) → ( ( 0 < 𝑥 ∧ 𝑥 < 𝐴 ) → ( 0 < 𝑥 ∧ ¬ 𝐴 < 𝑥 ) ) ) |
12 |
11
|
reximdva |
⊢ ( 𝐴 ∈ ℝ → ( ∃ 𝑥 ∈ ℚ ( 0 < 𝑥 ∧ 𝑥 < 𝐴 ) → ∃ 𝑥 ∈ ℚ ( 0 < 𝑥 ∧ ¬ 𝐴 < 𝑥 ) ) ) |
13 |
6 12
|
syld |
⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 → ∃ 𝑥 ∈ ℚ ( 0 < 𝑥 ∧ ¬ 𝐴 < 𝑥 ) ) ) |
14 |
3 13
|
sylbird |
⊢ ( 𝐴 ∈ ℝ → ( ¬ 𝐴 ≤ 0 → ∃ 𝑥 ∈ ℚ ( 0 < 𝑥 ∧ ¬ 𝐴 < 𝑥 ) ) ) |
15 |
|
rexanali |
⊢ ( ∃ 𝑥 ∈ ℚ ( 0 < 𝑥 ∧ ¬ 𝐴 < 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ ℚ ( 0 < 𝑥 → 𝐴 < 𝑥 ) ) |
16 |
14 15
|
syl6ib |
⊢ ( 𝐴 ∈ ℝ → ( ¬ 𝐴 ≤ 0 → ¬ ∀ 𝑥 ∈ ℚ ( 0 < 𝑥 → 𝐴 < 𝑥 ) ) ) |
17 |
16
|
con4d |
⊢ ( 𝐴 ∈ ℝ → ( ∀ 𝑥 ∈ ℚ ( 0 < 𝑥 → 𝐴 < 𝑥 ) → 𝐴 ≤ 0 ) ) |
18 |
17
|
imp |
⊢ ( ( 𝐴 ∈ ℝ ∧ ∀ 𝑥 ∈ ℚ ( 0 < 𝑥 → 𝐴 < 𝑥 ) ) → 𝐴 ≤ 0 ) |
19 |
18
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀ 𝑥 ∈ ℚ ( 0 < 𝑥 → 𝐴 < 𝑥 ) ) → 𝐴 ≤ 0 ) |
20 |
|
letri3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐴 = 0 ↔ ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐴 ) ) ) |
21 |
1 20
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 = 0 ↔ ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐴 ) ) ) |
22 |
21
|
rbaibd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 = 0 ↔ 𝐴 ≤ 0 ) ) |
23 |
22
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀ 𝑥 ∈ ℚ ( 0 < 𝑥 → 𝐴 < 𝑥 ) ) → ( 𝐴 = 0 ↔ 𝐴 ≤ 0 ) ) |
24 |
19 23
|
mpbird |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀ 𝑥 ∈ ℚ ( 0 < 𝑥 → 𝐴 < 𝑥 ) ) → 𝐴 = 0 ) |