Description: A quotient set is a set of subsets of the base set. (Contributed by Mario Carneiro, 9-Jul-2014) (Revised by Mario Carneiro, 12-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | qsss.1 | ⊢ ( 𝜑 → 𝑅 Er 𝐴 ) | |
Assertion | qsss | ⊢ ( 𝜑 → ( 𝐴 / 𝑅 ) ⊆ 𝒫 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qsss.1 | ⊢ ( 𝜑 → 𝑅 Er 𝐴 ) | |
2 | vex | ⊢ 𝑥 ∈ V | |
3 | 2 | elqs | ⊢ ( 𝑥 ∈ ( 𝐴 / 𝑅 ) ↔ ∃ 𝑦 ∈ 𝐴 𝑥 = [ 𝑦 ] 𝑅 ) |
4 | 1 | ecss | ⊢ ( 𝜑 → [ 𝑦 ] 𝑅 ⊆ 𝐴 ) |
5 | sseq1 | ⊢ ( 𝑥 = [ 𝑦 ] 𝑅 → ( 𝑥 ⊆ 𝐴 ↔ [ 𝑦 ] 𝑅 ⊆ 𝐴 ) ) | |
6 | 4 5 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝑥 = [ 𝑦 ] 𝑅 → 𝑥 ⊆ 𝐴 ) ) |
7 | velpw | ⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) | |
8 | 6 7 | syl6ibr | ⊢ ( 𝜑 → ( 𝑥 = [ 𝑦 ] 𝑅 → 𝑥 ∈ 𝒫 𝐴 ) ) |
9 | 8 | rexlimdvw | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝐴 𝑥 = [ 𝑦 ] 𝑅 → 𝑥 ∈ 𝒫 𝐴 ) ) |
10 | 3 9 | syl5bi | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 / 𝑅 ) → 𝑥 ∈ 𝒫 𝐴 ) ) |
11 | 10 | ssrdv | ⊢ ( 𝜑 → ( 𝐴 / 𝑅 ) ⊆ 𝒫 𝐴 ) |