Step |
Hyp |
Ref |
Expression |
1 |
|
elq |
⊢ ( 𝑧 ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝑧 = ( 𝑥 / 𝑦 ) ) |
2 |
|
drngring |
⊢ ( ( ℂfld ↾s 𝑅 ) ∈ DivRing → ( ℂfld ↾s 𝑅 ) ∈ Ring ) |
3 |
2
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( ℂfld ↾s 𝑅 ) ∈ Ring ) |
4 |
|
zsssubrg |
⊢ ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → ℤ ⊆ 𝑅 ) |
5 |
4
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ℤ ⊆ 𝑅 ) |
6 |
|
eqid |
⊢ ( ℂfld ↾s 𝑅 ) = ( ℂfld ↾s 𝑅 ) |
7 |
6
|
subrgbas |
⊢ ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → 𝑅 = ( Base ‘ ( ℂfld ↾s 𝑅 ) ) ) |
8 |
7
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑅 = ( Base ‘ ( ℂfld ↾s 𝑅 ) ) ) |
9 |
5 8
|
sseqtrd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ℤ ⊆ ( Base ‘ ( ℂfld ↾s 𝑅 ) ) ) |
10 |
|
simprl |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑥 ∈ ℤ ) |
11 |
9 10
|
sseldd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑥 ∈ ( Base ‘ ( ℂfld ↾s 𝑅 ) ) ) |
12 |
|
nnz |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) |
13 |
12
|
ad2antll |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑦 ∈ ℤ ) |
14 |
9 13
|
sseldd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑅 ) ) ) |
15 |
|
nnne0 |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ≠ 0 ) |
16 |
15
|
ad2antll |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑦 ≠ 0 ) |
17 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
18 |
6 17
|
subrg0 |
⊢ ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → 0 = ( 0g ‘ ( ℂfld ↾s 𝑅 ) ) ) |
19 |
18
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 0 = ( 0g ‘ ( ℂfld ↾s 𝑅 ) ) ) |
20 |
16 19
|
neeqtrd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑦 ≠ ( 0g ‘ ( ℂfld ↾s 𝑅 ) ) ) |
21 |
|
eqid |
⊢ ( Base ‘ ( ℂfld ↾s 𝑅 ) ) = ( Base ‘ ( ℂfld ↾s 𝑅 ) ) |
22 |
|
eqid |
⊢ ( Unit ‘ ( ℂfld ↾s 𝑅 ) ) = ( Unit ‘ ( ℂfld ↾s 𝑅 ) ) |
23 |
|
eqid |
⊢ ( 0g ‘ ( ℂfld ↾s 𝑅 ) ) = ( 0g ‘ ( ℂfld ↾s 𝑅 ) ) |
24 |
21 22 23
|
drngunit |
⊢ ( ( ℂfld ↾s 𝑅 ) ∈ DivRing → ( 𝑦 ∈ ( Unit ‘ ( ℂfld ↾s 𝑅 ) ) ↔ ( 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑅 ) ) ∧ 𝑦 ≠ ( 0g ‘ ( ℂfld ↾s 𝑅 ) ) ) ) ) |
25 |
24
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑦 ∈ ( Unit ‘ ( ℂfld ↾s 𝑅 ) ) ↔ ( 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑅 ) ) ∧ 𝑦 ≠ ( 0g ‘ ( ℂfld ↾s 𝑅 ) ) ) ) ) |
26 |
14 20 25
|
mpbir2and |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑦 ∈ ( Unit ‘ ( ℂfld ↾s 𝑅 ) ) ) |
27 |
|
eqid |
⊢ ( /r ‘ ( ℂfld ↾s 𝑅 ) ) = ( /r ‘ ( ℂfld ↾s 𝑅 ) ) |
28 |
21 22 27
|
dvrcl |
⊢ ( ( ( ℂfld ↾s 𝑅 ) ∈ Ring ∧ 𝑥 ∈ ( Base ‘ ( ℂfld ↾s 𝑅 ) ) ∧ 𝑦 ∈ ( Unit ‘ ( ℂfld ↾s 𝑅 ) ) ) → ( 𝑥 ( /r ‘ ( ℂfld ↾s 𝑅 ) ) 𝑦 ) ∈ ( Base ‘ ( ℂfld ↾s 𝑅 ) ) ) |
29 |
3 11 26 28
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑥 ( /r ‘ ( ℂfld ↾s 𝑅 ) ) 𝑦 ) ∈ ( Base ‘ ( ℂfld ↾s 𝑅 ) ) ) |
30 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑅 ∈ ( SubRing ‘ ℂfld ) ) |
31 |
5 10
|
sseldd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑥 ∈ 𝑅 ) |
32 |
|
cnflddiv |
⊢ / = ( /r ‘ ℂfld ) |
33 |
6 32 22 27
|
subrgdv |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ ( Unit ‘ ( ℂfld ↾s 𝑅 ) ) ) → ( 𝑥 / 𝑦 ) = ( 𝑥 ( /r ‘ ( ℂfld ↾s 𝑅 ) ) 𝑦 ) ) |
34 |
30 31 26 33
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑥 / 𝑦 ) = ( 𝑥 ( /r ‘ ( ℂfld ↾s 𝑅 ) ) 𝑦 ) ) |
35 |
29 34 8
|
3eltr4d |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑥 / 𝑦 ) ∈ 𝑅 ) |
36 |
|
eleq1 |
⊢ ( 𝑧 = ( 𝑥 / 𝑦 ) → ( 𝑧 ∈ 𝑅 ↔ ( 𝑥 / 𝑦 ) ∈ 𝑅 ) ) |
37 |
35 36
|
syl5ibrcom |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑧 = ( 𝑥 / 𝑦 ) → 𝑧 ∈ 𝑅 ) ) |
38 |
37
|
rexlimdvva |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝑧 = ( 𝑥 / 𝑦 ) → 𝑧 ∈ 𝑅 ) ) |
39 |
1 38
|
syl5bi |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) → ( 𝑧 ∈ ℚ → 𝑧 ∈ 𝑅 ) ) |
40 |
39
|
ssrdv |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) → ℚ ⊆ 𝑅 ) |