| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elq | ⊢ ( 𝑧  ∈  ℚ  ↔  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℕ 𝑧  =  ( 𝑥  /  𝑦 ) ) | 
						
							| 2 |  | drngring | ⊢ ( ( ℂfld  ↾s  𝑅 )  ∈  DivRing  →  ( ℂfld  ↾s  𝑅 )  ∈  Ring ) | 
						
							| 3 | 2 | ad2antlr | ⊢ ( ( ( 𝑅  ∈  ( SubRing ‘ ℂfld )  ∧  ( ℂfld  ↾s  𝑅 )  ∈  DivRing )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  →  ( ℂfld  ↾s  𝑅 )  ∈  Ring ) | 
						
							| 4 |  | zsssubrg | ⊢ ( 𝑅  ∈  ( SubRing ‘ ℂfld )  →  ℤ  ⊆  𝑅 ) | 
						
							| 5 | 4 | ad2antrr | ⊢ ( ( ( 𝑅  ∈  ( SubRing ‘ ℂfld )  ∧  ( ℂfld  ↾s  𝑅 )  ∈  DivRing )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  →  ℤ  ⊆  𝑅 ) | 
						
							| 6 |  | eqid | ⊢ ( ℂfld  ↾s  𝑅 )  =  ( ℂfld  ↾s  𝑅 ) | 
						
							| 7 | 6 | subrgbas | ⊢ ( 𝑅  ∈  ( SubRing ‘ ℂfld )  →  𝑅  =  ( Base ‘ ( ℂfld  ↾s  𝑅 ) ) ) | 
						
							| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝑅  ∈  ( SubRing ‘ ℂfld )  ∧  ( ℂfld  ↾s  𝑅 )  ∈  DivRing )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  →  𝑅  =  ( Base ‘ ( ℂfld  ↾s  𝑅 ) ) ) | 
						
							| 9 | 5 8 | sseqtrd | ⊢ ( ( ( 𝑅  ∈  ( SubRing ‘ ℂfld )  ∧  ( ℂfld  ↾s  𝑅 )  ∈  DivRing )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  →  ℤ  ⊆  ( Base ‘ ( ℂfld  ↾s  𝑅 ) ) ) | 
						
							| 10 |  | simprl | ⊢ ( ( ( 𝑅  ∈  ( SubRing ‘ ℂfld )  ∧  ( ℂfld  ↾s  𝑅 )  ∈  DivRing )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  →  𝑥  ∈  ℤ ) | 
						
							| 11 | 9 10 | sseldd | ⊢ ( ( ( 𝑅  ∈  ( SubRing ‘ ℂfld )  ∧  ( ℂfld  ↾s  𝑅 )  ∈  DivRing )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  →  𝑥  ∈  ( Base ‘ ( ℂfld  ↾s  𝑅 ) ) ) | 
						
							| 12 |  | nnz | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℤ ) | 
						
							| 13 | 12 | ad2antll | ⊢ ( ( ( 𝑅  ∈  ( SubRing ‘ ℂfld )  ∧  ( ℂfld  ↾s  𝑅 )  ∈  DivRing )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  →  𝑦  ∈  ℤ ) | 
						
							| 14 | 9 13 | sseldd | ⊢ ( ( ( 𝑅  ∈  ( SubRing ‘ ℂfld )  ∧  ( ℂfld  ↾s  𝑅 )  ∈  DivRing )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  →  𝑦  ∈  ( Base ‘ ( ℂfld  ↾s  𝑅 ) ) ) | 
						
							| 15 |  | nnne0 | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ≠  0 ) | 
						
							| 16 | 15 | ad2antll | ⊢ ( ( ( 𝑅  ∈  ( SubRing ‘ ℂfld )  ∧  ( ℂfld  ↾s  𝑅 )  ∈  DivRing )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  →  𝑦  ≠  0 ) | 
						
							| 17 |  | cnfld0 | ⊢ 0  =  ( 0g ‘ ℂfld ) | 
						
							| 18 | 6 17 | subrg0 | ⊢ ( 𝑅  ∈  ( SubRing ‘ ℂfld )  →  0  =  ( 0g ‘ ( ℂfld  ↾s  𝑅 ) ) ) | 
						
							| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝑅  ∈  ( SubRing ‘ ℂfld )  ∧  ( ℂfld  ↾s  𝑅 )  ∈  DivRing )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  →  0  =  ( 0g ‘ ( ℂfld  ↾s  𝑅 ) ) ) | 
						
							| 20 | 16 19 | neeqtrd | ⊢ ( ( ( 𝑅  ∈  ( SubRing ‘ ℂfld )  ∧  ( ℂfld  ↾s  𝑅 )  ∈  DivRing )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  →  𝑦  ≠  ( 0g ‘ ( ℂfld  ↾s  𝑅 ) ) ) | 
						
							| 21 |  | eqid | ⊢ ( Base ‘ ( ℂfld  ↾s  𝑅 ) )  =  ( Base ‘ ( ℂfld  ↾s  𝑅 ) ) | 
						
							| 22 |  | eqid | ⊢ ( Unit ‘ ( ℂfld  ↾s  𝑅 ) )  =  ( Unit ‘ ( ℂfld  ↾s  𝑅 ) ) | 
						
							| 23 |  | eqid | ⊢ ( 0g ‘ ( ℂfld  ↾s  𝑅 ) )  =  ( 0g ‘ ( ℂfld  ↾s  𝑅 ) ) | 
						
							| 24 | 21 22 23 | drngunit | ⊢ ( ( ℂfld  ↾s  𝑅 )  ∈  DivRing  →  ( 𝑦  ∈  ( Unit ‘ ( ℂfld  ↾s  𝑅 ) )  ↔  ( 𝑦  ∈  ( Base ‘ ( ℂfld  ↾s  𝑅 ) )  ∧  𝑦  ≠  ( 0g ‘ ( ℂfld  ↾s  𝑅 ) ) ) ) ) | 
						
							| 25 | 24 | ad2antlr | ⊢ ( ( ( 𝑅  ∈  ( SubRing ‘ ℂfld )  ∧  ( ℂfld  ↾s  𝑅 )  ∈  DivRing )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  →  ( 𝑦  ∈  ( Unit ‘ ( ℂfld  ↾s  𝑅 ) )  ↔  ( 𝑦  ∈  ( Base ‘ ( ℂfld  ↾s  𝑅 ) )  ∧  𝑦  ≠  ( 0g ‘ ( ℂfld  ↾s  𝑅 ) ) ) ) ) | 
						
							| 26 | 14 20 25 | mpbir2and | ⊢ ( ( ( 𝑅  ∈  ( SubRing ‘ ℂfld )  ∧  ( ℂfld  ↾s  𝑅 )  ∈  DivRing )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  →  𝑦  ∈  ( Unit ‘ ( ℂfld  ↾s  𝑅 ) ) ) | 
						
							| 27 |  | eqid | ⊢ ( /r ‘ ( ℂfld  ↾s  𝑅 ) )  =  ( /r ‘ ( ℂfld  ↾s  𝑅 ) ) | 
						
							| 28 | 21 22 27 | dvrcl | ⊢ ( ( ( ℂfld  ↾s  𝑅 )  ∈  Ring  ∧  𝑥  ∈  ( Base ‘ ( ℂfld  ↾s  𝑅 ) )  ∧  𝑦  ∈  ( Unit ‘ ( ℂfld  ↾s  𝑅 ) ) )  →  ( 𝑥 ( /r ‘ ( ℂfld  ↾s  𝑅 ) ) 𝑦 )  ∈  ( Base ‘ ( ℂfld  ↾s  𝑅 ) ) ) | 
						
							| 29 | 3 11 26 28 | syl3anc | ⊢ ( ( ( 𝑅  ∈  ( SubRing ‘ ℂfld )  ∧  ( ℂfld  ↾s  𝑅 )  ∈  DivRing )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  →  ( 𝑥 ( /r ‘ ( ℂfld  ↾s  𝑅 ) ) 𝑦 )  ∈  ( Base ‘ ( ℂfld  ↾s  𝑅 ) ) ) | 
						
							| 30 |  | simpll | ⊢ ( ( ( 𝑅  ∈  ( SubRing ‘ ℂfld )  ∧  ( ℂfld  ↾s  𝑅 )  ∈  DivRing )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  →  𝑅  ∈  ( SubRing ‘ ℂfld ) ) | 
						
							| 31 | 5 10 | sseldd | ⊢ ( ( ( 𝑅  ∈  ( SubRing ‘ ℂfld )  ∧  ( ℂfld  ↾s  𝑅 )  ∈  DivRing )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  →  𝑥  ∈  𝑅 ) | 
						
							| 32 |  | cnflddiv | ⊢  /   =  ( /r ‘ ℂfld ) | 
						
							| 33 | 6 32 22 27 | subrgdv | ⊢ ( ( 𝑅  ∈  ( SubRing ‘ ℂfld )  ∧  𝑥  ∈  𝑅  ∧  𝑦  ∈  ( Unit ‘ ( ℂfld  ↾s  𝑅 ) ) )  →  ( 𝑥  /  𝑦 )  =  ( 𝑥 ( /r ‘ ( ℂfld  ↾s  𝑅 ) ) 𝑦 ) ) | 
						
							| 34 | 30 31 26 33 | syl3anc | ⊢ ( ( ( 𝑅  ∈  ( SubRing ‘ ℂfld )  ∧  ( ℂfld  ↾s  𝑅 )  ∈  DivRing )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  →  ( 𝑥  /  𝑦 )  =  ( 𝑥 ( /r ‘ ( ℂfld  ↾s  𝑅 ) ) 𝑦 ) ) | 
						
							| 35 | 29 34 8 | 3eltr4d | ⊢ ( ( ( 𝑅  ∈  ( SubRing ‘ ℂfld )  ∧  ( ℂfld  ↾s  𝑅 )  ∈  DivRing )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  →  ( 𝑥  /  𝑦 )  ∈  𝑅 ) | 
						
							| 36 |  | eleq1 | ⊢ ( 𝑧  =  ( 𝑥  /  𝑦 )  →  ( 𝑧  ∈  𝑅  ↔  ( 𝑥  /  𝑦 )  ∈  𝑅 ) ) | 
						
							| 37 | 35 36 | syl5ibrcom | ⊢ ( ( ( 𝑅  ∈  ( SubRing ‘ ℂfld )  ∧  ( ℂfld  ↾s  𝑅 )  ∈  DivRing )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  →  ( 𝑧  =  ( 𝑥  /  𝑦 )  →  𝑧  ∈  𝑅 ) ) | 
						
							| 38 | 37 | rexlimdvva | ⊢ ( ( 𝑅  ∈  ( SubRing ‘ ℂfld )  ∧  ( ℂfld  ↾s  𝑅 )  ∈  DivRing )  →  ( ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℕ 𝑧  =  ( 𝑥  /  𝑦 )  →  𝑧  ∈  𝑅 ) ) | 
						
							| 39 | 1 38 | biimtrid | ⊢ ( ( 𝑅  ∈  ( SubRing ‘ ℂfld )  ∧  ( ℂfld  ↾s  𝑅 )  ∈  DivRing )  →  ( 𝑧  ∈  ℚ  →  𝑧  ∈  𝑅 ) ) | 
						
							| 40 | 39 | ssrdv | ⊢ ( ( 𝑅  ∈  ( SubRing ‘ ℂfld )  ∧  ( ℂfld  ↾s  𝑅 )  ∈  DivRing )  →  ℚ  ⊆  𝑅 ) |