Description: Closure of subtraction of rationals. (Contributed by NM, 2-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qsubcl | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ) → ( 𝐴 − 𝐵 ) ∈ ℚ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qcn | ⊢ ( 𝐴 ∈ ℚ → 𝐴 ∈ ℂ ) | |
| 2 | qcn | ⊢ ( 𝐵 ∈ ℚ → 𝐵 ∈ ℂ ) | |
| 3 | negsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
| 5 | qnegcl | ⊢ ( 𝐵 ∈ ℚ → - 𝐵 ∈ ℚ ) | |
| 6 | qaddcl | ⊢ ( ( 𝐴 ∈ ℚ ∧ - 𝐵 ∈ ℚ ) → ( 𝐴 + - 𝐵 ) ∈ ℚ ) | |
| 7 | 5 6 | sylan2 | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ) → ( 𝐴 + - 𝐵 ) ∈ ℚ ) |
| 8 | 4 7 | eqeltrrd | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ) → ( 𝐴 − 𝐵 ) ∈ ℚ ) |