Metamath Proof Explorer


Theorem qsubdrg

Description: The rational numbers form a division subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Assertion qsubdrg ( ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds ℚ ) ∈ DivRing )

Proof

Step Hyp Ref Expression
1 qcn ( 𝑥 ∈ ℚ → 𝑥 ∈ ℂ )
2 qaddcl ( ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) → ( 𝑥 + 𝑦 ) ∈ ℚ )
3 qnegcl ( 𝑥 ∈ ℚ → - 𝑥 ∈ ℚ )
4 zssq ℤ ⊆ ℚ
5 1z 1 ∈ ℤ
6 4 5 sselii 1 ∈ ℚ
7 qmulcl ( ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) → ( 𝑥 · 𝑦 ) ∈ ℚ )
8 qreccl ( ( 𝑥 ∈ ℚ ∧ 𝑥 ≠ 0 ) → ( 1 / 𝑥 ) ∈ ℚ )
9 1 2 3 6 7 8 cnsubdrglem ( ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds ℚ ) ∈ DivRing )