Metamath Proof Explorer


Theorem qtopbas

Description: The set of open intervals with rational endpoints forms a basis for a topology. (Contributed by NM, 8-Mar-2007)

Ref Expression
Assertion qtopbas ( (,) “ ( ℚ × ℚ ) ) ∈ TopBases

Proof

Step Hyp Ref Expression
1 qssre ℚ ⊆ ℝ
2 ressxr ℝ ⊆ ℝ*
3 1 2 sstri ℚ ⊆ ℝ*
4 3 qtopbaslem ( (,) “ ( ℚ × ℚ ) ) ∈ TopBases