| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qtoptopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ) |
| 2 |
|
topontop |
⊢ ( ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) → ( 𝐽 qTop 𝐹 ) ∈ Top ) |
| 3 |
|
eqid |
⊢ ∪ ( 𝐽 qTop 𝐹 ) = ∪ ( 𝐽 qTop 𝐹 ) |
| 4 |
3
|
iscld |
⊢ ( ( 𝐽 qTop 𝐹 ) ∈ Top → ( 𝐴 ∈ ( Clsd ‘ ( 𝐽 qTop 𝐹 ) ) ↔ ( 𝐴 ⊆ ∪ ( 𝐽 qTop 𝐹 ) ∧ ( ∪ ( 𝐽 qTop 𝐹 ) ∖ 𝐴 ) ∈ ( 𝐽 qTop 𝐹 ) ) ) ) |
| 5 |
1 2 4
|
3syl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝐴 ∈ ( Clsd ‘ ( 𝐽 qTop 𝐹 ) ) ↔ ( 𝐴 ⊆ ∪ ( 𝐽 qTop 𝐹 ) ∧ ( ∪ ( 𝐽 qTop 𝐹 ) ∖ 𝐴 ) ∈ ( 𝐽 qTop 𝐹 ) ) ) ) |
| 6 |
|
toponuni |
⊢ ( ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) → 𝑌 = ∪ ( 𝐽 qTop 𝐹 ) ) |
| 7 |
1 6
|
syl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → 𝑌 = ∪ ( 𝐽 qTop 𝐹 ) ) |
| 8 |
7
|
sseq2d |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝐴 ⊆ 𝑌 ↔ 𝐴 ⊆ ∪ ( 𝐽 qTop 𝐹 ) ) ) |
| 9 |
7
|
difeq1d |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝑌 ∖ 𝐴 ) = ( ∪ ( 𝐽 qTop 𝐹 ) ∖ 𝐴 ) ) |
| 10 |
9
|
eleq1d |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( ( 𝑌 ∖ 𝐴 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ∪ ( 𝐽 qTop 𝐹 ) ∖ 𝐴 ) ∈ ( 𝐽 qTop 𝐹 ) ) ) |
| 11 |
8 10
|
anbi12d |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( ( 𝐴 ⊆ 𝑌 ∧ ( 𝑌 ∖ 𝐴 ) ∈ ( 𝐽 qTop 𝐹 ) ) ↔ ( 𝐴 ⊆ ∪ ( 𝐽 qTop 𝐹 ) ∧ ( ∪ ( 𝐽 qTop 𝐹 ) ∖ 𝐴 ) ∈ ( 𝐽 qTop 𝐹 ) ) ) ) |
| 12 |
|
elqtop3 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( ( 𝑌 ∖ 𝐴 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ( 𝑌 ∖ 𝐴 ) ⊆ 𝑌 ∧ ( ◡ 𝐹 “ ( 𝑌 ∖ 𝐴 ) ) ∈ 𝐽 ) ) ) |
| 13 |
12
|
adantr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ( 𝑌 ∖ 𝐴 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ( 𝑌 ∖ 𝐴 ) ⊆ 𝑌 ∧ ( ◡ 𝐹 “ ( 𝑌 ∖ 𝐴 ) ) ∈ 𝐽 ) ) ) |
| 14 |
|
difss |
⊢ ( 𝑌 ∖ 𝐴 ) ⊆ 𝑌 |
| 15 |
14
|
biantrur |
⊢ ( ( ◡ 𝐹 “ ( 𝑌 ∖ 𝐴 ) ) ∈ 𝐽 ↔ ( ( 𝑌 ∖ 𝐴 ) ⊆ 𝑌 ∧ ( ◡ 𝐹 “ ( 𝑌 ∖ 𝐴 ) ) ∈ 𝐽 ) ) |
| 16 |
|
fofun |
⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → Fun 𝐹 ) |
| 17 |
16
|
ad2antlr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → Fun 𝐹 ) |
| 18 |
|
funcnvcnv |
⊢ ( Fun 𝐹 → Fun ◡ ◡ 𝐹 ) |
| 19 |
|
imadif |
⊢ ( Fun ◡ ◡ 𝐹 → ( ◡ 𝐹 “ ( 𝑌 ∖ 𝐴 ) ) = ( ( ◡ 𝐹 “ 𝑌 ) ∖ ( ◡ 𝐹 “ 𝐴 ) ) ) |
| 20 |
17 18 19
|
3syl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ◡ 𝐹 “ ( 𝑌 ∖ 𝐴 ) ) = ( ( ◡ 𝐹 “ 𝑌 ) ∖ ( ◡ 𝐹 “ 𝐴 ) ) ) |
| 21 |
|
fof |
⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 22 |
|
fimacnv |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → ( ◡ 𝐹 “ 𝑌 ) = 𝑋 ) |
| 23 |
21 22
|
syl |
⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → ( ◡ 𝐹 “ 𝑌 ) = 𝑋 ) |
| 24 |
23
|
ad2antlr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ◡ 𝐹 “ 𝑌 ) = 𝑋 ) |
| 25 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 26 |
25
|
ad2antrr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝑋 = ∪ 𝐽 ) |
| 27 |
24 26
|
eqtrd |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ◡ 𝐹 “ 𝑌 ) = ∪ 𝐽 ) |
| 28 |
27
|
difeq1d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ( ◡ 𝐹 “ 𝑌 ) ∖ ( ◡ 𝐹 “ 𝐴 ) ) = ( ∪ 𝐽 ∖ ( ◡ 𝐹 “ 𝐴 ) ) ) |
| 29 |
20 28
|
eqtrd |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ◡ 𝐹 “ ( 𝑌 ∖ 𝐴 ) ) = ( ∪ 𝐽 ∖ ( ◡ 𝐹 “ 𝐴 ) ) ) |
| 30 |
29
|
eleq1d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ( ◡ 𝐹 “ ( 𝑌 ∖ 𝐴 ) ) ∈ 𝐽 ↔ ( ∪ 𝐽 ∖ ( ◡ 𝐹 “ 𝐴 ) ) ∈ 𝐽 ) ) |
| 31 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 32 |
31
|
ad2antrr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝐽 ∈ Top ) |
| 33 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ 𝐴 ) ⊆ dom 𝐹 |
| 34 |
|
fofn |
⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 Fn 𝑋 ) |
| 35 |
34
|
fndmd |
⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → dom 𝐹 = 𝑋 ) |
| 36 |
35
|
ad2antlr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → dom 𝐹 = 𝑋 ) |
| 37 |
33 36
|
sseqtrid |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ◡ 𝐹 “ 𝐴 ) ⊆ 𝑋 ) |
| 38 |
37 26
|
sseqtrd |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ◡ 𝐹 “ 𝐴 ) ⊆ ∪ 𝐽 ) |
| 39 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 40 |
39
|
iscld2 |
⊢ ( ( 𝐽 ∈ Top ∧ ( ◡ 𝐹 “ 𝐴 ) ⊆ ∪ 𝐽 ) → ( ( ◡ 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ↔ ( ∪ 𝐽 ∖ ( ◡ 𝐹 “ 𝐴 ) ) ∈ 𝐽 ) ) |
| 41 |
32 38 40
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ( ◡ 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ↔ ( ∪ 𝐽 ∖ ( ◡ 𝐹 “ 𝐴 ) ) ∈ 𝐽 ) ) |
| 42 |
30 41
|
bitr4d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ( ◡ 𝐹 “ ( 𝑌 ∖ 𝐴 ) ) ∈ 𝐽 ↔ ( ◡ 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 43 |
15 42
|
bitr3id |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ( ( 𝑌 ∖ 𝐴 ) ⊆ 𝑌 ∧ ( ◡ 𝐹 “ ( 𝑌 ∖ 𝐴 ) ) ∈ 𝐽 ) ↔ ( ◡ 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 44 |
13 43
|
bitrd |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ( 𝑌 ∖ 𝐴 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ◡ 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 45 |
44
|
pm5.32da |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( ( 𝐴 ⊆ 𝑌 ∧ ( 𝑌 ∖ 𝐴 ) ∈ ( 𝐽 qTop 𝐹 ) ) ↔ ( 𝐴 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) ) ) |
| 46 |
5 11 45
|
3bitr2d |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝐴 ∈ ( Clsd ‘ ( 𝐽 qTop 𝐹 ) ) ↔ ( 𝐴 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) ) ) |