| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qtopomap.4 |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 2 |
|
qtopomap.5 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 3 |
|
qtopomap.6 |
⊢ ( 𝜑 → ran 𝐹 = 𝑌 ) |
| 4 |
|
qtopcmap.7 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐹 “ 𝑥 ) ∈ ( Clsd ‘ 𝐾 ) ) |
| 5 |
|
qtopss |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) → 𝐾 ⊆ ( 𝐽 qTop 𝐹 ) ) |
| 6 |
2 1 3 5
|
syl3anc |
⊢ ( 𝜑 → 𝐾 ⊆ ( 𝐽 qTop 𝐹 ) ) |
| 7 |
|
cntop1 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) |
| 8 |
2 7
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 9 |
|
toptopon2 |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 10 |
8 9
|
sylib |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 11 |
|
cnf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
| 12 |
10 1 2 11
|
syl3anc |
⊢ ( 𝜑 → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
| 13 |
12
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ∪ 𝐽 ) |
| 14 |
|
df-fo |
⊢ ( 𝐹 : ∪ 𝐽 –onto→ 𝑌 ↔ ( 𝐹 Fn ∪ 𝐽 ∧ ran 𝐹 = 𝑌 ) ) |
| 15 |
13 3 14
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : ∪ 𝐽 –onto→ 𝑌 ) |
| 16 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 17 |
16
|
elqtop2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 –onto→ 𝑌 ) → ( 𝑦 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
| 18 |
8 15 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
| 19 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝐹 : ∪ 𝐽 –onto→ 𝑌 ) |
| 20 |
|
difss |
⊢ ( 𝑌 ∖ 𝑦 ) ⊆ 𝑌 |
| 21 |
|
foimacnv |
⊢ ( ( 𝐹 : ∪ 𝐽 –onto→ 𝑌 ∧ ( 𝑌 ∖ 𝑦 ) ⊆ 𝑌 ) → ( 𝐹 “ ( ◡ 𝐹 “ ( 𝑌 ∖ 𝑦 ) ) ) = ( 𝑌 ∖ 𝑦 ) ) |
| 22 |
19 20 21
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( 𝐹 “ ( ◡ 𝐹 “ ( 𝑌 ∖ 𝑦 ) ) ) = ( 𝑌 ∖ 𝑦 ) ) |
| 23 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 24 |
|
toponuni |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 = ∪ 𝐾 ) |
| 25 |
23 24
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝑌 = ∪ 𝐾 ) |
| 26 |
25
|
difeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( 𝑌 ∖ 𝑦 ) = ( ∪ 𝐾 ∖ 𝑦 ) ) |
| 27 |
22 26
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( 𝐹 “ ( ◡ 𝐹 “ ( 𝑌 ∖ 𝑦 ) ) ) = ( ∪ 𝐾 ∖ 𝑦 ) ) |
| 28 |
|
imaeq2 |
⊢ ( 𝑥 = ( ◡ 𝐹 “ ( 𝑌 ∖ 𝑦 ) ) → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ ( ◡ 𝐹 “ ( 𝑌 ∖ 𝑦 ) ) ) ) |
| 29 |
28
|
eleq1d |
⊢ ( 𝑥 = ( ◡ 𝐹 “ ( 𝑌 ∖ 𝑦 ) ) → ( ( 𝐹 “ 𝑥 ) ∈ ( Clsd ‘ 𝐾 ) ↔ ( 𝐹 “ ( ◡ 𝐹 “ ( 𝑌 ∖ 𝑦 ) ) ) ∈ ( Clsd ‘ 𝐾 ) ) ) |
| 30 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ( 𝐹 “ 𝑥 ) ∈ ( Clsd ‘ 𝐾 ) ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ∀ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ( 𝐹 “ 𝑥 ) ∈ ( Clsd ‘ 𝐾 ) ) |
| 32 |
|
fofun |
⊢ ( 𝐹 : ∪ 𝐽 –onto→ 𝑌 → Fun 𝐹 ) |
| 33 |
|
funcnvcnv |
⊢ ( Fun 𝐹 → Fun ◡ ◡ 𝐹 ) |
| 34 |
|
imadif |
⊢ ( Fun ◡ ◡ 𝐹 → ( ◡ 𝐹 “ ( 𝑌 ∖ 𝑦 ) ) = ( ( ◡ 𝐹 “ 𝑌 ) ∖ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 35 |
19 32 33 34
|
4syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( ◡ 𝐹 “ ( 𝑌 ∖ 𝑦 ) ) = ( ( ◡ 𝐹 “ 𝑌 ) ∖ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 36 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
| 37 |
|
fimacnv |
⊢ ( 𝐹 : ∪ 𝐽 ⟶ 𝑌 → ( ◡ 𝐹 “ 𝑌 ) = ∪ 𝐽 ) |
| 38 |
36 37
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( ◡ 𝐹 “ 𝑌 ) = ∪ 𝐽 ) |
| 39 |
38
|
difeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( ( ◡ 𝐹 “ 𝑌 ) ∖ ( ◡ 𝐹 “ 𝑦 ) ) = ( ∪ 𝐽 ∖ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 40 |
35 39
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( ◡ 𝐹 “ ( 𝑌 ∖ 𝑦 ) ) = ( ∪ 𝐽 ∖ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 41 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝐽 ∈ Top ) |
| 42 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) |
| 43 |
16
|
opncld |
⊢ ( ( 𝐽 ∈ Top ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) → ( ∪ 𝐽 ∖ ( ◡ 𝐹 “ 𝑦 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 44 |
41 42 43
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( ∪ 𝐽 ∖ ( ◡ 𝐹 “ 𝑦 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 45 |
40 44
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( ◡ 𝐹 “ ( 𝑌 ∖ 𝑦 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 46 |
29 31 45
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( 𝐹 “ ( ◡ 𝐹 “ ( 𝑌 ∖ 𝑦 ) ) ) ∈ ( Clsd ‘ 𝐾 ) ) |
| 47 |
27 46
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( ∪ 𝐾 ∖ 𝑦 ) ∈ ( Clsd ‘ 𝐾 ) ) |
| 48 |
|
topontop |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝐾 ∈ Top ) |
| 49 |
23 48
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝐾 ∈ Top ) |
| 50 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝑦 ⊆ 𝑌 ) |
| 51 |
50 25
|
sseqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝑦 ⊆ ∪ 𝐾 ) |
| 52 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
| 53 |
52
|
isopn2 |
⊢ ( ( 𝐾 ∈ Top ∧ 𝑦 ⊆ ∪ 𝐾 ) → ( 𝑦 ∈ 𝐾 ↔ ( ∪ 𝐾 ∖ 𝑦 ) ∈ ( Clsd ‘ 𝐾 ) ) ) |
| 54 |
49 51 53
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( 𝑦 ∈ 𝐾 ↔ ( ∪ 𝐾 ∖ 𝑦 ) ∈ ( Clsd ‘ 𝐾 ) ) ) |
| 55 |
47 54
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝑦 ∈ 𝐾 ) |
| 56 |
55
|
ex |
⊢ ( 𝜑 → ( ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) → 𝑦 ∈ 𝐾 ) ) |
| 57 |
18 56
|
sylbid |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐽 qTop 𝐹 ) → 𝑦 ∈ 𝐾 ) ) |
| 58 |
57
|
ssrdv |
⊢ ( 𝜑 → ( 𝐽 qTop 𝐹 ) ⊆ 𝐾 ) |
| 59 |
6 58
|
eqssd |
⊢ ( 𝜑 → 𝐾 = ( 𝐽 qTop 𝐹 ) ) |