Step |
Hyp |
Ref |
Expression |
1 |
|
qtopeu.1 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
2 |
|
qtopeu.3 |
⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ 𝑌 ) |
3 |
|
qtopeu.4 |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ) |
4 |
|
qtopeu.5 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) |
5 |
|
fofn |
⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 Fn 𝑋 ) |
6 |
2 5
|
syl |
⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐹 Fn 𝑋 ) |
8 |
|
fniniseg |
⊢ ( 𝐹 Fn 𝑋 → ( 𝑦 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ↔ ( 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) ) ) |
9 |
7 8
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ↔ ( 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) ) ) |
10 |
|
eqcom |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
11 |
10
|
3anbi3i |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
12 |
|
3anass |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) ) ) |
13 |
11 12
|
bitri |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) ) ) |
14 |
13 4
|
sylan2br |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) ) ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) |
15 |
14
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) ) ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑥 ) ) |
16 |
15
|
expr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
17 |
9 16
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
18 |
17
|
ralrimiv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑥 ) ) |
19 |
|
cntop2 |
⊢ ( 𝐺 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) |
20 |
3 19
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
21 |
|
toptopon2 |
⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
22 |
20 21
|
sylib |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
23 |
|
cnf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐺 : 𝑋 ⟶ ∪ 𝐾 ) |
24 |
1 22 3 23
|
syl3anc |
⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ∪ 𝐾 ) |
25 |
24
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝑋 ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐺 Fn 𝑋 ) |
27 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ dom 𝐹 |
28 |
|
fof |
⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
29 |
2 28
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
30 |
29
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝑋 ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → dom 𝐹 = 𝑋 ) |
32 |
27 31
|
sseqtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑋 ) |
33 |
|
eqeq1 |
⊢ ( 𝑤 = ( 𝐺 ‘ 𝑦 ) → ( 𝑤 = ( 𝐺 ‘ 𝑥 ) ↔ ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
34 |
33
|
ralima |
⊢ ( ( 𝐺 Fn 𝑋 ∧ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑋 ) → ( ∀ 𝑤 ∈ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) 𝑤 = ( 𝐺 ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
35 |
26 32 34
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑤 ∈ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) 𝑤 = ( 𝐺 ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
36 |
18 35
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑤 ∈ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) 𝑤 = ( 𝐺 ‘ 𝑥 ) ) |
37 |
24
|
fdmd |
⊢ ( 𝜑 → dom 𝐺 = 𝑋 ) |
38 |
37
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ dom 𝐺 ↔ 𝑥 ∈ 𝑋 ) ) |
39 |
38
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ dom 𝐺 ) |
40 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
41 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
42 |
|
fniniseg |
⊢ ( 𝐹 Fn 𝑋 → ( 𝑥 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) ) ) |
43 |
7 42
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) ) ) |
44 |
40 41 43
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) |
45 |
|
inelcm |
⊢ ( ( 𝑥 ∈ dom 𝐺 ∧ 𝑥 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) → ( dom 𝐺 ∩ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ≠ ∅ ) |
46 |
39 44 45
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( dom 𝐺 ∩ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ≠ ∅ ) |
47 |
|
imadisj |
⊢ ( ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) = ∅ ↔ ( dom 𝐺 ∩ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) = ∅ ) |
48 |
47
|
necon3bii |
⊢ ( ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ≠ ∅ ↔ ( dom 𝐺 ∩ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ≠ ∅ ) |
49 |
46 48
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ≠ ∅ ) |
50 |
|
eqsn |
⊢ ( ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ≠ ∅ → ( ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) = { ( 𝐺 ‘ 𝑥 ) } ↔ ∀ 𝑤 ∈ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) 𝑤 = ( 𝐺 ‘ 𝑥 ) ) ) |
51 |
49 50
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) = { ( 𝐺 ‘ 𝑥 ) } ↔ ∀ 𝑤 ∈ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) 𝑤 = ( 𝐺 ‘ 𝑥 ) ) ) |
52 |
36 51
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) = { ( 𝐺 ‘ 𝑥 ) } ) |
53 |
52
|
unieqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∪ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) = ∪ { ( 𝐺 ‘ 𝑥 ) } ) |
54 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑥 ) ∈ V |
55 |
54
|
unisn |
⊢ ∪ { ( 𝐺 ‘ 𝑥 ) } = ( 𝐺 ‘ 𝑥 ) |
56 |
53 55
|
eqtr2di |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑥 ) = ∪ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ) |
57 |
56
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ) ) |
58 |
24
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
59 |
29
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑌 ) |
60 |
29
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
61 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) = ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) ) |
62 |
|
sneq |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑥 ) → { 𝑤 } = { ( 𝐹 ‘ 𝑥 ) } ) |
63 |
62
|
imaeq2d |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑥 ) → ( ◡ 𝐹 “ { 𝑤 } ) = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) |
64 |
63
|
imaeq2d |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑥 ) → ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) = ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ) |
65 |
64
|
unieqd |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑥 ) → ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) = ∪ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ) |
66 |
59 60 61 65
|
fmptco |
⊢ ( 𝜑 → ( ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) ∘ 𝐹 ) = ( 𝑥 ∈ 𝑋 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ) ) |
67 |
57 58 66
|
3eqtr4d |
⊢ ( 𝜑 → 𝐺 = ( ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) ∘ 𝐹 ) ) |
68 |
67 3
|
eqeltrrd |
⊢ ( 𝜑 → ( ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) ∘ 𝐹 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
69 |
24
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑥 ) ∈ ∪ 𝐾 ) |
70 |
56 69
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∪ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ∈ ∪ 𝐾 ) |
71 |
70
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∪ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ∈ ∪ 𝐾 ) |
72 |
65
|
eqcomd |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑥 ) → ∪ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) = ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) |
73 |
72
|
eqcoms |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑤 → ∪ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) = ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) |
74 |
73
|
eleq1d |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑤 → ( ∪ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ∈ ∪ 𝐾 ↔ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ∈ ∪ 𝐾 ) ) |
75 |
74
|
cbvfo |
⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → ( ∀ 𝑥 ∈ 𝑋 ∪ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ∈ ∪ 𝐾 ↔ ∀ 𝑤 ∈ 𝑌 ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ∈ ∪ 𝐾 ) ) |
76 |
2 75
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑋 ∪ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ∈ ∪ 𝐾 ↔ ∀ 𝑤 ∈ 𝑌 ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ∈ ∪ 𝐾 ) ) |
77 |
71 76
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝑌 ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ∈ ∪ 𝐾 ) |
78 |
|
eqid |
⊢ ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) = ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) |
79 |
78
|
fmpt |
⊢ ( ∀ 𝑤 ∈ 𝑌 ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ∈ ∪ 𝐾 ↔ ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) : 𝑌 ⟶ ∪ 𝐾 ) |
80 |
77 79
|
sylib |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) : 𝑌 ⟶ ∪ 𝐾 ) |
81 |
|
qtopcn |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) ∧ ( 𝐹 : 𝑋 –onto→ 𝑌 ∧ ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) : 𝑌 ⟶ ∪ 𝐾 ) ) → ( ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ↔ ( ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) ∘ 𝐹 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
82 |
1 22 2 80 81
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ↔ ( ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) ∘ 𝐹 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
83 |
68 82
|
mpbird |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) |
84 |
|
coeq1 |
⊢ ( 𝑓 = ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → ( 𝑓 ∘ 𝐹 ) = ( ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) ∘ 𝐹 ) ) |
85 |
84
|
rspceeqv |
⊢ ( ( ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ∧ 𝐺 = ( ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) ∘ 𝐹 ) ) → ∃ 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) 𝐺 = ( 𝑓 ∘ 𝐹 ) ) |
86 |
83 67 85
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) 𝐺 = ( 𝑓 ∘ 𝐹 ) ) |
87 |
|
eqtr2 |
⊢ ( ( 𝐺 = ( 𝑓 ∘ 𝐹 ) ∧ 𝐺 = ( 𝑔 ∘ 𝐹 ) ) → ( 𝑓 ∘ 𝐹 ) = ( 𝑔 ∘ 𝐹 ) ) |
88 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) ) → 𝐹 : 𝑋 –onto→ 𝑌 ) |
89 |
|
qtoptopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ) |
90 |
1 2 89
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ) |
91 |
90
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) ) → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ) |
92 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) ) → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
93 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) ) → 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) |
94 |
|
cnf2 |
⊢ ( ( ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) → 𝑓 : 𝑌 ⟶ ∪ 𝐾 ) |
95 |
91 92 93 94
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) ) → 𝑓 : 𝑌 ⟶ ∪ 𝐾 ) |
96 |
95
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) ) → 𝑓 Fn 𝑌 ) |
97 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) ) → 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) |
98 |
|
cnf2 |
⊢ ( ( ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) → 𝑔 : 𝑌 ⟶ ∪ 𝐾 ) |
99 |
91 92 97 98
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) ) → 𝑔 : 𝑌 ⟶ ∪ 𝐾 ) |
100 |
99
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) ) → 𝑔 Fn 𝑌 ) |
101 |
|
cocan2 |
⊢ ( ( 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝑓 Fn 𝑌 ∧ 𝑔 Fn 𝑌 ) → ( ( 𝑓 ∘ 𝐹 ) = ( 𝑔 ∘ 𝐹 ) ↔ 𝑓 = 𝑔 ) ) |
102 |
88 96 100 101
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) ) → ( ( 𝑓 ∘ 𝐹 ) = ( 𝑔 ∘ 𝐹 ) ↔ 𝑓 = 𝑔 ) ) |
103 |
87 102
|
syl5ib |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) ) → ( ( 𝐺 = ( 𝑓 ∘ 𝐹 ) ∧ 𝐺 = ( 𝑔 ∘ 𝐹 ) ) → 𝑓 = 𝑔 ) ) |
104 |
103
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ∀ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ( ( 𝐺 = ( 𝑓 ∘ 𝐹 ) ∧ 𝐺 = ( 𝑔 ∘ 𝐹 ) ) → 𝑓 = 𝑔 ) ) |
105 |
|
coeq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ∘ 𝐹 ) = ( 𝑔 ∘ 𝐹 ) ) |
106 |
105
|
eqeq2d |
⊢ ( 𝑓 = 𝑔 → ( 𝐺 = ( 𝑓 ∘ 𝐹 ) ↔ 𝐺 = ( 𝑔 ∘ 𝐹 ) ) ) |
107 |
106
|
reu4 |
⊢ ( ∃! 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) 𝐺 = ( 𝑓 ∘ 𝐹 ) ↔ ( ∃ 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) 𝐺 = ( 𝑓 ∘ 𝐹 ) ∧ ∀ 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ∀ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ( ( 𝐺 = ( 𝑓 ∘ 𝐹 ) ∧ 𝐺 = ( 𝑔 ∘ 𝐹 ) ) → 𝑓 = 𝑔 ) ) ) |
108 |
86 104 107
|
sylanbrc |
⊢ ( 𝜑 → ∃! 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) 𝐺 = ( 𝑓 ∘ 𝐹 ) ) |