Step |
Hyp |
Ref |
Expression |
1 |
|
qtopf1.1 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
2 |
|
qtopf1.2 |
⊢ ( 𝜑 → 𝐹 : 𝑋 –1-1→ 𝑌 ) |
3 |
|
f1fn |
⊢ ( 𝐹 : 𝑋 –1-1→ 𝑌 → 𝐹 Fn 𝑋 ) |
4 |
2 3
|
syl |
⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
5 |
|
qtopid |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 Fn 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ) |
6 |
1 4 5
|
syl2anc |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ) |
7 |
|
f1f1orn |
⊢ ( 𝐹 : 𝑋 –1-1→ 𝑌 → 𝐹 : 𝑋 –1-1-onto→ ran 𝐹 ) |
8 |
|
f1ocnv |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ ran 𝐹 → ◡ 𝐹 : ran 𝐹 –1-1-onto→ 𝑋 ) |
9 |
|
f1of |
⊢ ( ◡ 𝐹 : ran 𝐹 –1-1-onto→ 𝑋 → ◡ 𝐹 : ran 𝐹 ⟶ 𝑋 ) |
10 |
2 7 8 9
|
4syl |
⊢ ( 𝜑 → ◡ 𝐹 : ran 𝐹 ⟶ 𝑋 ) |
11 |
|
imacnvcnv |
⊢ ( ◡ ◡ 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑥 ) |
12 |
|
imassrn |
⊢ ( 𝐹 “ 𝑥 ) ⊆ ran 𝐹 |
13 |
12
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( 𝐹 “ 𝑥 ) ⊆ ran 𝐹 ) |
14 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → 𝐹 : 𝑋 –1-1→ 𝑌 ) |
15 |
|
toponss |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ⊆ 𝑋 ) |
16 |
1 15
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ⊆ 𝑋 ) |
17 |
|
f1imacnv |
⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝑥 ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) = 𝑥 ) |
18 |
14 16 17
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) = 𝑥 ) |
19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ∈ 𝐽 ) |
20 |
18 19
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) ∈ 𝐽 ) |
21 |
|
dffn4 |
⊢ ( 𝐹 Fn 𝑋 ↔ 𝐹 : 𝑋 –onto→ ran 𝐹 ) |
22 |
4 21
|
sylib |
⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ ran 𝐹 ) |
23 |
|
elqtop3 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ ran 𝐹 ) → ( ( 𝐹 “ 𝑥 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ( 𝐹 “ 𝑥 ) ⊆ ran 𝐹 ∧ ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) ∈ 𝐽 ) ) ) |
24 |
1 22 23
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 “ 𝑥 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ( 𝐹 “ 𝑥 ) ⊆ ran 𝐹 ∧ ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) ∈ 𝐽 ) ) ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( ( 𝐹 “ 𝑥 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ( 𝐹 “ 𝑥 ) ⊆ ran 𝐹 ∧ ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) ∈ 𝐽 ) ) ) |
26 |
13 20 25
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( 𝐹 “ 𝑥 ) ∈ ( 𝐽 qTop 𝐹 ) ) |
27 |
11 26
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( ◡ ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 qTop 𝐹 ) ) |
28 |
27
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐽 ( ◡ ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 qTop 𝐹 ) ) |
29 |
|
qtoptopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ ran 𝐹 ) → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ ran 𝐹 ) ) |
30 |
1 22 29
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ ran 𝐹 ) ) |
31 |
|
iscn |
⊢ ( ( ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ ran 𝐹 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( ◡ 𝐹 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐽 ) ↔ ( ◡ 𝐹 : ran 𝐹 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐽 ( ◡ ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 qTop 𝐹 ) ) ) ) |
32 |
30 1 31
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐹 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐽 ) ↔ ( ◡ 𝐹 : ran 𝐹 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐽 ( ◡ ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 qTop 𝐹 ) ) ) ) |
33 |
10 28 32
|
mpbir2and |
⊢ ( 𝜑 → ◡ 𝐹 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐽 ) ) |
34 |
|
ishmeo |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo ( 𝐽 qTop 𝐹 ) ) ↔ ( 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ∧ ◡ 𝐹 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐽 ) ) ) |
35 |
6 33 34
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Homeo ( 𝐽 qTop 𝐹 ) ) ) |