Metamath Proof Explorer


Theorem qtopf1

Description: If a quotient map is injective, then it is a homeomorphism. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypotheses qtopf1.1 ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
qtopf1.2 ( 𝜑𝐹 : 𝑋1-1𝑌 )
Assertion qtopf1 ( 𝜑𝐹 ∈ ( 𝐽 Homeo ( 𝐽 qTop 𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 qtopf1.1 ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
2 qtopf1.2 ( 𝜑𝐹 : 𝑋1-1𝑌 )
3 f1fn ( 𝐹 : 𝑋1-1𝑌𝐹 Fn 𝑋 )
4 2 3 syl ( 𝜑𝐹 Fn 𝑋 )
5 qtopid ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 Fn 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) )
6 1 4 5 syl2anc ( 𝜑𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) )
7 f1f1orn ( 𝐹 : 𝑋1-1𝑌𝐹 : 𝑋1-1-onto→ ran 𝐹 )
8 f1ocnv ( 𝐹 : 𝑋1-1-onto→ ran 𝐹 𝐹 : ran 𝐹1-1-onto𝑋 )
9 f1of ( 𝐹 : ran 𝐹1-1-onto𝑋 𝐹 : ran 𝐹𝑋 )
10 2 7 8 9 4syl ( 𝜑 𝐹 : ran 𝐹𝑋 )
11 imacnvcnv ( 𝐹𝑥 ) = ( 𝐹𝑥 )
12 imassrn ( 𝐹𝑥 ) ⊆ ran 𝐹
13 12 a1i ( ( 𝜑𝑥𝐽 ) → ( 𝐹𝑥 ) ⊆ ran 𝐹 )
14 2 adantr ( ( 𝜑𝑥𝐽 ) → 𝐹 : 𝑋1-1𝑌 )
15 toponss ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑥𝐽 ) → 𝑥𝑋 )
16 1 15 sylan ( ( 𝜑𝑥𝐽 ) → 𝑥𝑋 )
17 f1imacnv ( ( 𝐹 : 𝑋1-1𝑌𝑥𝑋 ) → ( 𝐹 “ ( 𝐹𝑥 ) ) = 𝑥 )
18 14 16 17 syl2anc ( ( 𝜑𝑥𝐽 ) → ( 𝐹 “ ( 𝐹𝑥 ) ) = 𝑥 )
19 simpr ( ( 𝜑𝑥𝐽 ) → 𝑥𝐽 )
20 18 19 eqeltrd ( ( 𝜑𝑥𝐽 ) → ( 𝐹 “ ( 𝐹𝑥 ) ) ∈ 𝐽 )
21 dffn4 ( 𝐹 Fn 𝑋𝐹 : 𝑋onto→ ran 𝐹 )
22 4 21 sylib ( 𝜑𝐹 : 𝑋onto→ ran 𝐹 )
23 elqtop3 ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋onto→ ran 𝐹 ) → ( ( 𝐹𝑥 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ( 𝐹𝑥 ) ⊆ ran 𝐹 ∧ ( 𝐹 “ ( 𝐹𝑥 ) ) ∈ 𝐽 ) ) )
24 1 22 23 syl2anc ( 𝜑 → ( ( 𝐹𝑥 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ( 𝐹𝑥 ) ⊆ ran 𝐹 ∧ ( 𝐹 “ ( 𝐹𝑥 ) ) ∈ 𝐽 ) ) )
25 24 adantr ( ( 𝜑𝑥𝐽 ) → ( ( 𝐹𝑥 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ( 𝐹𝑥 ) ⊆ ran 𝐹 ∧ ( 𝐹 “ ( 𝐹𝑥 ) ) ∈ 𝐽 ) ) )
26 13 20 25 mpbir2and ( ( 𝜑𝑥𝐽 ) → ( 𝐹𝑥 ) ∈ ( 𝐽 qTop 𝐹 ) )
27 11 26 eqeltrid ( ( 𝜑𝑥𝐽 ) → ( 𝐹𝑥 ) ∈ ( 𝐽 qTop 𝐹 ) )
28 27 ralrimiva ( 𝜑 → ∀ 𝑥𝐽 ( 𝐹𝑥 ) ∈ ( 𝐽 qTop 𝐹 ) )
29 qtoptopon ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋onto→ ran 𝐹 ) → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ ran 𝐹 ) )
30 1 22 29 syl2anc ( 𝜑 → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ ran 𝐹 ) )
31 iscn ( ( ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ ran 𝐹 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( 𝐹 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐽 ) ↔ ( 𝐹 : ran 𝐹𝑋 ∧ ∀ 𝑥𝐽 ( 𝐹𝑥 ) ∈ ( 𝐽 qTop 𝐹 ) ) ) )
32 30 1 31 syl2anc ( 𝜑 → ( 𝐹 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐽 ) ↔ ( 𝐹 : ran 𝐹𝑋 ∧ ∀ 𝑥𝐽 ( 𝐹𝑥 ) ∈ ( 𝐽 qTop 𝐹 ) ) ) )
33 10 28 32 mpbir2and ( 𝜑 𝐹 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐽 ) )
34 ishmeo ( 𝐹 ∈ ( 𝐽 Homeo ( 𝐽 qTop 𝐹 ) ) ↔ ( 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐽 ) ) )
35 6 33 34 sylanbrc ( 𝜑𝐹 ∈ ( 𝐽 Homeo ( 𝐽 qTop 𝐹 ) ) )