Step |
Hyp |
Ref |
Expression |
1 |
|
qtophmeo.2 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
2 |
|
qtophmeo.3 |
⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ 𝑌 ) |
3 |
|
qtophmeo.4 |
⊢ ( 𝜑 → 𝐺 : 𝑋 –onto→ 𝑌 ) |
4 |
|
qtophmeo.5 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ) |
5 |
|
fofn |
⊢ ( 𝐺 : 𝑋 –onto→ 𝑌 → 𝐺 Fn 𝑋 ) |
6 |
3 5
|
syl |
⊢ ( 𝜑 → 𝐺 Fn 𝑋 ) |
7 |
|
qtopid |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐺 Fn 𝑋 ) → 𝐺 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐺 ) ) ) |
8 |
1 6 7
|
syl2anc |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐺 ) ) ) |
9 |
|
df-3an |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) |
10 |
4
|
biimpd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ) |
11 |
10
|
impr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) |
12 |
9 11
|
sylan2b |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) |
13 |
1 2 8 12
|
qtopeu |
⊢ ( 𝜑 → ∃! 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) 𝐺 = ( 𝑓 ∘ 𝐹 ) ) |
14 |
|
reurex |
⊢ ( ∃! 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) 𝐺 = ( 𝑓 ∘ 𝐹 ) → ∃ 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) 𝐺 = ( 𝑓 ∘ 𝐹 ) ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → ∃ 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) 𝐺 = ( 𝑓 ∘ 𝐹 ) ) |
16 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) → 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ) |
17 |
|
fofn |
⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 Fn 𝑋 ) |
18 |
2 17
|
syl |
⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
19 |
|
qtopid |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 Fn 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ) |
20 |
1 18 19
|
syl2anc |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ) |
21 |
|
df-3an |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ) |
22 |
4
|
biimprd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) |
23 |
22
|
impr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
24 |
21 23
|
sylan2b |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
25 |
1 3 20 24
|
qtopeu |
⊢ ( 𝜑 → ∃! 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) 𝐹 = ( 𝑔 ∘ 𝐺 ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) → ∃! 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) 𝐹 = ( 𝑔 ∘ 𝐺 ) ) |
27 |
|
reurex |
⊢ ( ∃! 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) 𝐹 = ( 𝑔 ∘ 𝐺 ) → ∃ 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) 𝐹 = ( 𝑔 ∘ 𝐺 ) ) |
28 |
26 27
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) → ∃ 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) 𝐹 = ( 𝑔 ∘ 𝐺 ) ) |
29 |
|
qtoptopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ) |
30 |
1 2 29
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ) |
31 |
30
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ) |
32 |
|
qtoptopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐺 : 𝑋 –onto→ 𝑌 ) → ( 𝐽 qTop 𝐺 ) ∈ ( TopOn ‘ 𝑌 ) ) |
33 |
1 3 32
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 qTop 𝐺 ) ∈ ( TopOn ‘ 𝑌 ) ) |
34 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ( 𝐽 qTop 𝐺 ) ∈ ( TopOn ‘ 𝑌 ) ) |
35 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ) |
36 |
|
cnf2 |
⊢ ( ( ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ∧ ( 𝐽 qTop 𝐺 ) ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ) → 𝑓 : 𝑌 ⟶ 𝑌 ) |
37 |
31 34 35 36
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → 𝑓 : 𝑌 ⟶ 𝑌 ) |
38 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ) |
39 |
|
cnf2 |
⊢ ( ( ( 𝐽 qTop 𝐺 ) ∈ ( TopOn ‘ 𝑌 ) ∧ ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ) → 𝑔 : 𝑌 ⟶ 𝑌 ) |
40 |
34 31 38 39
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → 𝑔 : 𝑌 ⟶ 𝑌 ) |
41 |
|
coeq1 |
⊢ ( ℎ = ( 𝑔 ∘ 𝑓 ) → ( ℎ ∘ 𝐹 ) = ( ( 𝑔 ∘ 𝑓 ) ∘ 𝐹 ) ) |
42 |
41
|
eqeq2d |
⊢ ( ℎ = ( 𝑔 ∘ 𝑓 ) → ( 𝐹 = ( ℎ ∘ 𝐹 ) ↔ 𝐹 = ( ( 𝑔 ∘ 𝑓 ) ∘ 𝐹 ) ) ) |
43 |
|
coeq1 |
⊢ ( ℎ = ( I ↾ 𝑌 ) → ( ℎ ∘ 𝐹 ) = ( ( I ↾ 𝑌 ) ∘ 𝐹 ) ) |
44 |
43
|
eqeq2d |
⊢ ( ℎ = ( I ↾ 𝑌 ) → ( 𝐹 = ( ℎ ∘ 𝐹 ) ↔ 𝐹 = ( ( I ↾ 𝑌 ) ∘ 𝐹 ) ) ) |
45 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
46 |
1 2 20 45
|
qtopeu |
⊢ ( 𝜑 → ∃! ℎ ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐹 ) ) 𝐹 = ( ℎ ∘ 𝐹 ) ) |
47 |
46
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ∃! ℎ ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐹 ) ) 𝐹 = ( ℎ ∘ 𝐹 ) ) |
48 |
|
cnco |
⊢ ( ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ) → ( 𝑔 ∘ 𝑓 ) ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐹 ) ) ) |
49 |
35 38 48
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ( 𝑔 ∘ 𝑓 ) ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐹 ) ) ) |
50 |
|
idcn |
⊢ ( ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) → ( I ↾ 𝑌 ) ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐹 ) ) ) |
51 |
30 50
|
syl |
⊢ ( 𝜑 → ( I ↾ 𝑌 ) ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐹 ) ) ) |
52 |
51
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ( I ↾ 𝑌 ) ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐹 ) ) ) |
53 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → 𝐹 = ( 𝑔 ∘ 𝐺 ) ) |
54 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → 𝐺 = ( 𝑓 ∘ 𝐹 ) ) |
55 |
54
|
coeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ( 𝑔 ∘ 𝐺 ) = ( 𝑔 ∘ ( 𝑓 ∘ 𝐹 ) ) ) |
56 |
53 55
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → 𝐹 = ( 𝑔 ∘ ( 𝑓 ∘ 𝐹 ) ) ) |
57 |
|
coass |
⊢ ( ( 𝑔 ∘ 𝑓 ) ∘ 𝐹 ) = ( 𝑔 ∘ ( 𝑓 ∘ 𝐹 ) ) |
58 |
56 57
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → 𝐹 = ( ( 𝑔 ∘ 𝑓 ) ∘ 𝐹 ) ) |
59 |
|
fof |
⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
60 |
2 59
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
61 |
60
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
62 |
|
fcoi2 |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → ( ( I ↾ 𝑌 ) ∘ 𝐹 ) = 𝐹 ) |
63 |
61 62
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ( ( I ↾ 𝑌 ) ∘ 𝐹 ) = 𝐹 ) |
64 |
63
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → 𝐹 = ( ( I ↾ 𝑌 ) ∘ 𝐹 ) ) |
65 |
42 44 47 49 52 58 64
|
reu2eqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ( 𝑔 ∘ 𝑓 ) = ( I ↾ 𝑌 ) ) |
66 |
|
coeq1 |
⊢ ( ℎ = ( 𝑓 ∘ 𝑔 ) → ( ℎ ∘ 𝐺 ) = ( ( 𝑓 ∘ 𝑔 ) ∘ 𝐺 ) ) |
67 |
66
|
eqeq2d |
⊢ ( ℎ = ( 𝑓 ∘ 𝑔 ) → ( 𝐺 = ( ℎ ∘ 𝐺 ) ↔ 𝐺 = ( ( 𝑓 ∘ 𝑔 ) ∘ 𝐺 ) ) ) |
68 |
|
coeq1 |
⊢ ( ℎ = ( I ↾ 𝑌 ) → ( ℎ ∘ 𝐺 ) = ( ( I ↾ 𝑌 ) ∘ 𝐺 ) ) |
69 |
68
|
eqeq2d |
⊢ ( ℎ = ( I ↾ 𝑌 ) → ( 𝐺 = ( ℎ ∘ 𝐺 ) ↔ 𝐺 = ( ( I ↾ 𝑌 ) ∘ 𝐺 ) ) ) |
70 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) |
71 |
1 3 8 70
|
qtopeu |
⊢ ( 𝜑 → ∃! ℎ ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐺 ) ) 𝐺 = ( ℎ ∘ 𝐺 ) ) |
72 |
71
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ∃! ℎ ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐺 ) ) 𝐺 = ( ℎ ∘ 𝐺 ) ) |
73 |
|
cnco |
⊢ ( ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ) → ( 𝑓 ∘ 𝑔 ) ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐺 ) ) ) |
74 |
38 35 73
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ( 𝑓 ∘ 𝑔 ) ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐺 ) ) ) |
75 |
|
idcn |
⊢ ( ( 𝐽 qTop 𝐺 ) ∈ ( TopOn ‘ 𝑌 ) → ( I ↾ 𝑌 ) ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐺 ) ) ) |
76 |
33 75
|
syl |
⊢ ( 𝜑 → ( I ↾ 𝑌 ) ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐺 ) ) ) |
77 |
76
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ( I ↾ 𝑌 ) ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐺 ) ) ) |
78 |
53
|
coeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ( 𝑓 ∘ 𝐹 ) = ( 𝑓 ∘ ( 𝑔 ∘ 𝐺 ) ) ) |
79 |
54 78
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → 𝐺 = ( 𝑓 ∘ ( 𝑔 ∘ 𝐺 ) ) ) |
80 |
|
coass |
⊢ ( ( 𝑓 ∘ 𝑔 ) ∘ 𝐺 ) = ( 𝑓 ∘ ( 𝑔 ∘ 𝐺 ) ) |
81 |
79 80
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → 𝐺 = ( ( 𝑓 ∘ 𝑔 ) ∘ 𝐺 ) ) |
82 |
|
fof |
⊢ ( 𝐺 : 𝑋 –onto→ 𝑌 → 𝐺 : 𝑋 ⟶ 𝑌 ) |
83 |
3 82
|
syl |
⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ 𝑌 ) |
84 |
83
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → 𝐺 : 𝑋 ⟶ 𝑌 ) |
85 |
|
fcoi2 |
⊢ ( 𝐺 : 𝑋 ⟶ 𝑌 → ( ( I ↾ 𝑌 ) ∘ 𝐺 ) = 𝐺 ) |
86 |
84 85
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ( ( I ↾ 𝑌 ) ∘ 𝐺 ) = 𝐺 ) |
87 |
86
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → 𝐺 = ( ( I ↾ 𝑌 ) ∘ 𝐺 ) ) |
88 |
67 69 72 74 77 81 87
|
reu2eqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ( 𝑓 ∘ 𝑔 ) = ( I ↾ 𝑌 ) ) |
89 |
37 40 65 88
|
2fcoidinvd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ◡ 𝑓 = 𝑔 ) |
90 |
89 38
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ◡ 𝑓 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ) |
91 |
28 90
|
rexlimddv |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) → ◡ 𝑓 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ) |
92 |
|
ishmeo |
⊢ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ↔ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ ◡ 𝑓 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ) ) |
93 |
16 91 92
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) → 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) |
94 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) → 𝐺 = ( 𝑓 ∘ 𝐹 ) ) |
95 |
15 93 94
|
reximssdv |
⊢ ( 𝜑 → ∃ 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) 𝐺 = ( 𝑓 ∘ 𝐹 ) ) |
96 |
|
eqtr2 |
⊢ ( ( 𝐺 = ( 𝑓 ∘ 𝐹 ) ∧ 𝐺 = ( 𝑔 ∘ 𝐹 ) ) → ( 𝑓 ∘ 𝐹 ) = ( 𝑔 ∘ 𝐹 ) ) |
97 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) ) → 𝐹 : 𝑋 –onto→ 𝑌 ) |
98 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) ) → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ) |
99 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) ) → ( 𝐽 qTop 𝐺 ) ∈ ( TopOn ‘ 𝑌 ) ) |
100 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) ) → 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) |
101 |
|
hmeof1o2 |
⊢ ( ( ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ∧ ( 𝐽 qTop 𝐺 ) ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) → 𝑓 : 𝑌 –1-1-onto→ 𝑌 ) |
102 |
98 99 100 101
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) ) → 𝑓 : 𝑌 –1-1-onto→ 𝑌 ) |
103 |
|
f1ofn |
⊢ ( 𝑓 : 𝑌 –1-1-onto→ 𝑌 → 𝑓 Fn 𝑌 ) |
104 |
102 103
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) ) → 𝑓 Fn 𝑌 ) |
105 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) ) → 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) |
106 |
|
hmeof1o2 |
⊢ ( ( ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ∧ ( 𝐽 qTop 𝐺 ) ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) → 𝑔 : 𝑌 –1-1-onto→ 𝑌 ) |
107 |
98 99 105 106
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) ) → 𝑔 : 𝑌 –1-1-onto→ 𝑌 ) |
108 |
|
f1ofn |
⊢ ( 𝑔 : 𝑌 –1-1-onto→ 𝑌 → 𝑔 Fn 𝑌 ) |
109 |
107 108
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) ) → 𝑔 Fn 𝑌 ) |
110 |
|
cocan2 |
⊢ ( ( 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝑓 Fn 𝑌 ∧ 𝑔 Fn 𝑌 ) → ( ( 𝑓 ∘ 𝐹 ) = ( 𝑔 ∘ 𝐹 ) ↔ 𝑓 = 𝑔 ) ) |
111 |
97 104 109 110
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) ) → ( ( 𝑓 ∘ 𝐹 ) = ( 𝑔 ∘ 𝐹 ) ↔ 𝑓 = 𝑔 ) ) |
112 |
96 111
|
syl5ib |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) ) → ( ( 𝐺 = ( 𝑓 ∘ 𝐹 ) ∧ 𝐺 = ( 𝑔 ∘ 𝐹 ) ) → 𝑓 = 𝑔 ) ) |
113 |
112
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ∀ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ( ( 𝐺 = ( 𝑓 ∘ 𝐹 ) ∧ 𝐺 = ( 𝑔 ∘ 𝐹 ) ) → 𝑓 = 𝑔 ) ) |
114 |
|
coeq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ∘ 𝐹 ) = ( 𝑔 ∘ 𝐹 ) ) |
115 |
114
|
eqeq2d |
⊢ ( 𝑓 = 𝑔 → ( 𝐺 = ( 𝑓 ∘ 𝐹 ) ↔ 𝐺 = ( 𝑔 ∘ 𝐹 ) ) ) |
116 |
115
|
reu4 |
⊢ ( ∃! 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) 𝐺 = ( 𝑓 ∘ 𝐹 ) ↔ ( ∃ 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) 𝐺 = ( 𝑓 ∘ 𝐹 ) ∧ ∀ 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ∀ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ( ( 𝐺 = ( 𝑓 ∘ 𝐹 ) ∧ 𝐺 = ( 𝑔 ∘ 𝐹 ) ) → 𝑓 = 𝑔 ) ) ) |
117 |
95 113 116
|
sylanbrc |
⊢ ( 𝜑 → ∃! 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) 𝐺 = ( 𝑓 ∘ 𝐹 ) ) |