| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qtopcmp.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
kgentop |
⊢ ( 𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top ) |
| 3 |
1
|
qtoptop |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 Fn 𝑋 ) → ( 𝐽 qTop 𝐹 ) ∈ Top ) |
| 4 |
2 3
|
sylan |
⊢ ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) → ( 𝐽 qTop 𝐹 ) ∈ Top ) |
| 5 |
|
elssuni |
⊢ ( 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) → 𝑥 ⊆ ∪ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) |
| 6 |
5
|
adantl |
⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝑥 ⊆ ∪ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) |
| 7 |
4
|
adantr |
⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → ( 𝐽 qTop 𝐹 ) ∈ Top ) |
| 8 |
|
eqid |
⊢ ∪ ( 𝐽 qTop 𝐹 ) = ∪ ( 𝐽 qTop 𝐹 ) |
| 9 |
8
|
kgenuni |
⊢ ( ( 𝐽 qTop 𝐹 ) ∈ Top → ∪ ( 𝐽 qTop 𝐹 ) = ∪ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) |
| 10 |
7 9
|
syl |
⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → ∪ ( 𝐽 qTop 𝐹 ) = ∪ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) |
| 11 |
6 10
|
sseqtrrd |
⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝑥 ⊆ ∪ ( 𝐽 qTop 𝐹 ) ) |
| 12 |
|
simpll |
⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝐽 ∈ ran 𝑘Gen ) |
| 13 |
12 2
|
syl |
⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝐽 ∈ Top ) |
| 14 |
|
simplr |
⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝐹 Fn 𝑋 ) |
| 15 |
|
dffn4 |
⊢ ( 𝐹 Fn 𝑋 ↔ 𝐹 : 𝑋 –onto→ ran 𝐹 ) |
| 16 |
14 15
|
sylib |
⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝐹 : 𝑋 –onto→ ran 𝐹 ) |
| 17 |
1
|
qtopuni |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 : 𝑋 –onto→ ran 𝐹 ) → ran 𝐹 = ∪ ( 𝐽 qTop 𝐹 ) ) |
| 18 |
13 16 17
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → ran 𝐹 = ∪ ( 𝐽 qTop 𝐹 ) ) |
| 19 |
11 18
|
sseqtrrd |
⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝑥 ⊆ ran 𝐹 ) |
| 20 |
1
|
toptopon |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 21 |
13 20
|
sylib |
⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 22 |
|
qtopid |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 Fn 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ) |
| 23 |
21 14 22
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ) |
| 24 |
|
kgencn3 |
⊢ ( ( 𝐽 ∈ ran 𝑘Gen ∧ ( 𝐽 qTop 𝐹 ) ∈ Top ) → ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) = ( 𝐽 Cn ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) ) |
| 25 |
12 7 24
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) = ( 𝐽 Cn ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) ) |
| 26 |
23 25
|
eleqtrd |
⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝐹 ∈ ( 𝐽 Cn ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) ) |
| 27 |
|
cnima |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) |
| 28 |
26 27
|
sylancom |
⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) |
| 29 |
1
|
elqtop2 |
⊢ ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 : 𝑋 –onto→ ran 𝐹 ) → ( 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑥 ⊆ ran 𝐹 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 30 |
12 16 29
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → ( 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑥 ⊆ ran 𝐹 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 31 |
19 28 30
|
mpbir2and |
⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ) |
| 32 |
31
|
ex |
⊢ ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) → ( 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) → 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ) ) |
| 33 |
32
|
ssrdv |
⊢ ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) → ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ⊆ ( 𝐽 qTop 𝐹 ) ) |
| 34 |
|
iskgen2 |
⊢ ( ( 𝐽 qTop 𝐹 ) ∈ ran 𝑘Gen ↔ ( ( 𝐽 qTop 𝐹 ) ∈ Top ∧ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ⊆ ( 𝐽 qTop 𝐹 ) ) ) |
| 35 |
4 33 34
|
sylanbrc |
⊢ ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) → ( 𝐽 qTop 𝐹 ) ∈ ran 𝑘Gen ) |