Metamath Proof Explorer


Theorem qtopkgen

Description: A quotient of a compactly generated space is compactly generated. (Contributed by Mario Carneiro, 9-Apr-2015)

Ref Expression
Hypothesis qtopcmp.1 𝑋 = 𝐽
Assertion qtopkgen ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) → ( 𝐽 qTop 𝐹 ) ∈ ran 𝑘Gen )

Proof

Step Hyp Ref Expression
1 qtopcmp.1 𝑋 = 𝐽
2 kgentop ( 𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top )
3 1 qtoptop ( ( 𝐽 ∈ Top ∧ 𝐹 Fn 𝑋 ) → ( 𝐽 qTop 𝐹 ) ∈ Top )
4 2 3 sylan ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) → ( 𝐽 qTop 𝐹 ) ∈ Top )
5 elssuni ( 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) → 𝑥 ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) )
6 5 adantl ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝑥 ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) )
7 4 adantr ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → ( 𝐽 qTop 𝐹 ) ∈ Top )
8 eqid ( 𝐽 qTop 𝐹 ) = ( 𝐽 qTop 𝐹 )
9 8 kgenuni ( ( 𝐽 qTop 𝐹 ) ∈ Top → ( 𝐽 qTop 𝐹 ) = ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) )
10 7 9 syl ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → ( 𝐽 qTop 𝐹 ) = ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) )
11 6 10 sseqtrrd ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝑥 ( 𝐽 qTop 𝐹 ) )
12 simpll ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝐽 ∈ ran 𝑘Gen )
13 12 2 syl ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝐽 ∈ Top )
14 simplr ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝐹 Fn 𝑋 )
15 dffn4 ( 𝐹 Fn 𝑋𝐹 : 𝑋onto→ ran 𝐹 )
16 14 15 sylib ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝐹 : 𝑋onto→ ran 𝐹 )
17 1 qtopuni ( ( 𝐽 ∈ Top ∧ 𝐹 : 𝑋onto→ ran 𝐹 ) → ran 𝐹 = ( 𝐽 qTop 𝐹 ) )
18 13 16 17 syl2anc ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → ran 𝐹 = ( 𝐽 qTop 𝐹 ) )
19 11 18 sseqtrrd ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝑥 ⊆ ran 𝐹 )
20 1 toptopon ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
21 13 20 sylib ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
22 qtopid ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 Fn 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) )
23 21 14 22 syl2anc ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) )
24 kgencn3 ( ( 𝐽 ∈ ran 𝑘Gen ∧ ( 𝐽 qTop 𝐹 ) ∈ Top ) → ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) = ( 𝐽 Cn ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) )
25 12 7 24 syl2anc ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) = ( 𝐽 Cn ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) )
26 23 25 eleqtrd ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝐹 ∈ ( 𝐽 Cn ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) )
27 cnima ( ( 𝐹 ∈ ( 𝐽 Cn ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → ( 𝐹𝑥 ) ∈ 𝐽 )
28 26 27 sylancom ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → ( 𝐹𝑥 ) ∈ 𝐽 )
29 1 elqtop2 ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 : 𝑋onto→ ran 𝐹 ) → ( 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑥 ⊆ ran 𝐹 ∧ ( 𝐹𝑥 ) ∈ 𝐽 ) ) )
30 12 16 29 syl2anc ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → ( 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑥 ⊆ ran 𝐹 ∧ ( 𝐹𝑥 ) ∈ 𝐽 ) ) )
31 19 28 30 mpbir2and ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ) → 𝑥 ∈ ( 𝐽 qTop 𝐹 ) )
32 31 ex ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) → ( 𝑥 ∈ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) → 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ) )
33 32 ssrdv ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) → ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ⊆ ( 𝐽 qTop 𝐹 ) )
34 iskgen2 ( ( 𝐽 qTop 𝐹 ) ∈ ran 𝑘Gen ↔ ( ( 𝐽 qTop 𝐹 ) ∈ Top ∧ ( 𝑘Gen ‘ ( 𝐽 qTop 𝐹 ) ) ⊆ ( 𝐽 qTop 𝐹 ) ) )
35 4 33 34 sylanbrc ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋 ) → ( 𝐽 qTop 𝐹 ) ∈ ran 𝑘Gen )