| Step |
Hyp |
Ref |
Expression |
| 1 |
|
toponss |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → 𝑥 ⊆ 𝑌 ) |
| 2 |
1
|
3ad2antl2 |
⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → 𝑥 ⊆ 𝑌 ) |
| 3 |
|
cnima |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑥 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) |
| 4 |
3
|
3ad2antl1 |
⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) |
| 5 |
|
simpl1 |
⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 6 |
|
cntop1 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) |
| 7 |
5 6
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → 𝐽 ∈ Top ) |
| 8 |
|
toptopon2 |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 9 |
7 8
|
sylib |
⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 10 |
|
simpl2 |
⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 11 |
|
cnf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
| 12 |
9 10 5 11
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
| 13 |
12
|
ffnd |
⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → 𝐹 Fn ∪ 𝐽 ) |
| 14 |
|
simpl3 |
⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → ran 𝐹 = 𝑌 ) |
| 15 |
|
df-fo |
⊢ ( 𝐹 : ∪ 𝐽 –onto→ 𝑌 ↔ ( 𝐹 Fn ∪ 𝐽 ∧ ran 𝐹 = 𝑌 ) ) |
| 16 |
13 14 15
|
sylanbrc |
⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → 𝐹 : ∪ 𝐽 –onto→ 𝑌 ) |
| 17 |
|
elqtop3 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐹 : ∪ 𝐽 –onto→ 𝑌 ) → ( 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 18 |
9 16 17
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → ( 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 19 |
2 4 18
|
mpbir2and |
⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ) |
| 20 |
19
|
ex |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) → ( 𝑥 ∈ 𝐾 → 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ) ) |
| 21 |
20
|
ssrdv |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) → 𝐾 ⊆ ( 𝐽 qTop 𝐹 ) ) |