Step |
Hyp |
Ref |
Expression |
1 |
|
toponss |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → 𝑥 ⊆ 𝑌 ) |
2 |
1
|
3ad2antl2 |
⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → 𝑥 ⊆ 𝑌 ) |
3 |
|
cnima |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑥 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) |
4 |
3
|
3ad2antl1 |
⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) |
5 |
|
simpl1 |
⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
6 |
|
cntop1 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) |
7 |
5 6
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → 𝐽 ∈ Top ) |
8 |
|
toptopon2 |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
9 |
7 8
|
sylib |
⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
10 |
|
simpl2 |
⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
11 |
|
cnf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
12 |
9 10 5 11
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
13 |
12
|
ffnd |
⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → 𝐹 Fn ∪ 𝐽 ) |
14 |
|
simpl3 |
⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → ran 𝐹 = 𝑌 ) |
15 |
|
df-fo |
⊢ ( 𝐹 : ∪ 𝐽 –onto→ 𝑌 ↔ ( 𝐹 Fn ∪ 𝐽 ∧ ran 𝐹 = 𝑌 ) ) |
16 |
13 14 15
|
sylanbrc |
⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → 𝐹 : ∪ 𝐽 –onto→ 𝑌 ) |
17 |
|
elqtop3 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐹 : ∪ 𝐽 –onto→ 𝑌 ) → ( 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
18 |
9 16 17
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → ( 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
19 |
2 4 18
|
mpbir2and |
⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ) |
20 |
19
|
ex |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) → ( 𝑥 ∈ 𝐾 → 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ) ) |
21 |
20
|
ssrdv |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) → 𝐾 ⊆ ( 𝐽 qTop 𝐹 ) ) |