| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 2 |
1
|
qtopres |
⊢ ( 𝐹 ∈ 𝑉 → ( 𝐽 qTop 𝐹 ) = ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) |
| 3 |
2
|
3ad2ant2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( 𝐽 qTop 𝐹 ) = ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) |
| 4 |
|
simp1 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → 𝐽 ∈ Top ) |
| 5 |
|
funres |
⊢ ( Fun 𝐹 → Fun ( 𝐹 ↾ ∪ 𝐽 ) ) |
| 6 |
5
|
3ad2ant3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → Fun ( 𝐹 ↾ ∪ 𝐽 ) ) |
| 7 |
|
funforn |
⊢ ( Fun ( 𝐹 ↾ ∪ 𝐽 ) ↔ ( 𝐹 ↾ ∪ 𝐽 ) : dom ( 𝐹 ↾ ∪ 𝐽 ) –onto→ ran ( 𝐹 ↾ ∪ 𝐽 ) ) |
| 8 |
6 7
|
sylib |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( 𝐹 ↾ ∪ 𝐽 ) : dom ( 𝐹 ↾ ∪ 𝐽 ) –onto→ ran ( 𝐹 ↾ ∪ 𝐽 ) ) |
| 9 |
|
dmres |
⊢ dom ( 𝐹 ↾ ∪ 𝐽 ) = ( ∪ 𝐽 ∩ dom 𝐹 ) |
| 10 |
|
inss1 |
⊢ ( ∪ 𝐽 ∩ dom 𝐹 ) ⊆ ∪ 𝐽 |
| 11 |
9 10
|
eqsstri |
⊢ dom ( 𝐹 ↾ ∪ 𝐽 ) ⊆ ∪ 𝐽 |
| 12 |
11
|
a1i |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → dom ( 𝐹 ↾ ∪ 𝐽 ) ⊆ ∪ 𝐽 ) |
| 13 |
1
|
elqtop |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐹 ↾ ∪ 𝐽 ) : dom ( 𝐹 ↾ ∪ 𝐽 ) –onto→ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ dom ( 𝐹 ↾ ∪ 𝐽 ) ⊆ ∪ 𝐽 ) → ( 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ↔ ( 𝑦 ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ∈ 𝐽 ) ) ) |
| 14 |
4 8 12 13
|
syl3anc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ↔ ( 𝑦 ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ∈ 𝐽 ) ) ) |
| 15 |
14
|
simprbda |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) → 𝑦 ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ) |
| 16 |
|
velpw |
⊢ ( 𝑦 ∈ 𝒫 ran ( 𝐹 ↾ ∪ 𝐽 ) ↔ 𝑦 ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ) |
| 17 |
15 16
|
sylibr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) → 𝑦 ∈ 𝒫 ran ( 𝐹 ↾ ∪ 𝐽 ) ) |
| 18 |
17
|
ex |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) → 𝑦 ∈ 𝒫 ran ( 𝐹 ↾ ∪ 𝐽 ) ) ) |
| 19 |
18
|
ssrdv |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ⊆ 𝒫 ran ( 𝐹 ↾ ∪ 𝐽 ) ) |
| 20 |
|
sstr2 |
⊢ ( 𝑥 ⊆ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) → ( ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ⊆ 𝒫 ran ( 𝐹 ↾ ∪ 𝐽 ) → 𝑥 ⊆ 𝒫 ran ( 𝐹 ↾ ∪ 𝐽 ) ) ) |
| 21 |
19 20
|
syl5com |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( 𝑥 ⊆ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) → 𝑥 ⊆ 𝒫 ran ( 𝐹 ↾ ∪ 𝐽 ) ) ) |
| 22 |
|
sspwuni |
⊢ ( 𝑥 ⊆ 𝒫 ran ( 𝐹 ↾ ∪ 𝐽 ) ↔ ∪ 𝑥 ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ) |
| 23 |
21 22
|
imbitrdi |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( 𝑥 ⊆ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) → ∪ 𝑥 ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ) ) |
| 24 |
|
imauni |
⊢ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ ∪ 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) |
| 25 |
14
|
simplbda |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) → ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ∈ 𝐽 ) |
| 26 |
25
|
ralrimiva |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ∀ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ∈ 𝐽 ) |
| 27 |
|
ssralv |
⊢ ( 𝑥 ⊆ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) → ( ∀ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ∈ 𝐽 → ∀ 𝑦 ∈ 𝑥 ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ∈ 𝐽 ) ) |
| 28 |
26 27
|
mpan9 |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ 𝑥 ⊆ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) → ∀ 𝑦 ∈ 𝑥 ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ∈ 𝐽 ) |
| 29 |
|
iunopn |
⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ 𝑥 ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ∈ 𝐽 ) → ∪ 𝑦 ∈ 𝑥 ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ∈ 𝐽 ) |
| 30 |
4 28 29
|
syl2an2r |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ 𝑥 ⊆ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) → ∪ 𝑦 ∈ 𝑥 ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ∈ 𝐽 ) |
| 31 |
24 30
|
eqeltrid |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ 𝑥 ⊆ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) → ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ ∪ 𝑥 ) ∈ 𝐽 ) |
| 32 |
31
|
ex |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( 𝑥 ⊆ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) → ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ ∪ 𝑥 ) ∈ 𝐽 ) ) |
| 33 |
23 32
|
jcad |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( 𝑥 ⊆ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) → ( ∪ 𝑥 ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ ∪ 𝑥 ) ∈ 𝐽 ) ) ) |
| 34 |
1
|
elqtop |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐹 ↾ ∪ 𝐽 ) : dom ( 𝐹 ↾ ∪ 𝐽 ) –onto→ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ dom ( 𝐹 ↾ ∪ 𝐽 ) ⊆ ∪ 𝐽 ) → ( ∪ 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ↔ ( ∪ 𝑥 ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ ∪ 𝑥 ) ∈ 𝐽 ) ) ) |
| 35 |
4 8 12 34
|
syl3anc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( ∪ 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ↔ ( ∪ 𝑥 ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ ∪ 𝑥 ) ∈ 𝐽 ) ) ) |
| 36 |
33 35
|
sylibrd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( 𝑥 ⊆ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) → ∪ 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) |
| 37 |
36
|
alrimiv |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ∀ 𝑥 ( 𝑥 ⊆ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) → ∪ 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) |
| 38 |
|
inss1 |
⊢ ( 𝑥 ∩ 𝑦 ) ⊆ 𝑥 |
| 39 |
1
|
elqtop |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐹 ↾ ∪ 𝐽 ) : dom ( 𝐹 ↾ ∪ 𝐽 ) –onto→ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ dom ( 𝐹 ↾ ∪ 𝐽 ) ⊆ ∪ 𝐽 ) → ( 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ↔ ( 𝑥 ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 40 |
4 8 12 39
|
syl3anc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ↔ ( 𝑥 ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 41 |
40
|
biimpa |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) → ( 𝑥 ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑥 ) ∈ 𝐽 ) ) |
| 42 |
41
|
adantrr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ ( 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∧ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) → ( 𝑥 ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑥 ) ∈ 𝐽 ) ) |
| 43 |
42
|
simpld |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ ( 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∧ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) → 𝑥 ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ) |
| 44 |
38 43
|
sstrid |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ ( 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∧ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) → ( 𝑥 ∩ 𝑦 ) ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ) |
| 45 |
6
|
adantr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ ( 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∧ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) → Fun ( 𝐹 ↾ ∪ 𝐽 ) ) |
| 46 |
|
inpreima |
⊢ ( Fun ( 𝐹 ↾ ∪ 𝐽 ) → ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ ( 𝑥 ∩ 𝑦 ) ) = ( ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑥 ) ∩ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ) ) |
| 47 |
45 46
|
syl |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ ( 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∧ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) → ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ ( 𝑥 ∩ 𝑦 ) ) = ( ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑥 ) ∩ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ) ) |
| 48 |
4
|
adantr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ ( 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∧ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) → 𝐽 ∈ Top ) |
| 49 |
42
|
simprd |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ ( 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∧ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) → ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑥 ) ∈ 𝐽 ) |
| 50 |
25
|
adantrl |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ ( 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∧ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) → ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ∈ 𝐽 ) |
| 51 |
|
inopn |
⊢ ( ( 𝐽 ∈ Top ∧ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑥 ) ∈ 𝐽 ∧ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ∈ 𝐽 ) → ( ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑥 ) ∩ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ) ∈ 𝐽 ) |
| 52 |
48 49 50 51
|
syl3anc |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ ( 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∧ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) → ( ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑥 ) ∩ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ 𝑦 ) ) ∈ 𝐽 ) |
| 53 |
47 52
|
eqeltrd |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ ( 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∧ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) → ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ ( 𝑥 ∩ 𝑦 ) ) ∈ 𝐽 ) |
| 54 |
1
|
elqtop |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐹 ↾ ∪ 𝐽 ) : dom ( 𝐹 ↾ ∪ 𝐽 ) –onto→ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ dom ( 𝐹 ↾ ∪ 𝐽 ) ⊆ ∪ 𝐽 ) → ( ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ↔ ( ( 𝑥 ∩ 𝑦 ) ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ ( 𝑥 ∩ 𝑦 ) ) ∈ 𝐽 ) ) ) |
| 55 |
4 8 12 54
|
syl3anc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ↔ ( ( 𝑥 ∩ 𝑦 ) ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ ( 𝑥 ∩ 𝑦 ) ) ∈ 𝐽 ) ) ) |
| 56 |
55
|
adantr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ ( 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∧ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) → ( ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ↔ ( ( 𝑥 ∩ 𝑦 ) ⊆ ran ( 𝐹 ↾ ∪ 𝐽 ) ∧ ( ◡ ( 𝐹 ↾ ∪ 𝐽 ) “ ( 𝑥 ∩ 𝑦 ) ) ∈ 𝐽 ) ) ) |
| 57 |
44 53 56
|
mpbir2and |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) ∧ ( 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∧ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) → ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) |
| 58 |
57
|
ralrimivva |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ∀ 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∀ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) |
| 59 |
|
ovex |
⊢ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∈ V |
| 60 |
|
istopg |
⊢ ( ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∈ V → ( ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∈ Top ↔ ( ∀ 𝑥 ( 𝑥 ⊆ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) → ∪ 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ∧ ∀ 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∀ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) ) |
| 61 |
59 60
|
ax-mp |
⊢ ( ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∈ Top ↔ ( ∀ 𝑥 ( 𝑥 ⊆ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) → ∪ 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ∧ ∀ 𝑥 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∀ 𝑦 ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ) ) |
| 62 |
37 58 61
|
sylanbrc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( 𝐽 qTop ( 𝐹 ↾ ∪ 𝐽 ) ) ∈ Top ) |
| 63 |
3 62
|
eqeltrd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( 𝐽 qTop 𝐹 ) ∈ Top ) |