Step |
Hyp |
Ref |
Expression |
1 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
2 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
3 |
|
foeq2 |
⊢ ( 𝑋 = ∪ 𝐽 → ( 𝐹 : 𝑋 –onto→ 𝑌 ↔ 𝐹 : ∪ 𝐽 –onto→ 𝑌 ) ) |
4 |
2 3
|
syl |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐹 : 𝑋 –onto→ 𝑌 ↔ 𝐹 : ∪ 𝐽 –onto→ 𝑌 ) ) |
5 |
4
|
biimpa |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → 𝐹 : ∪ 𝐽 –onto→ 𝑌 ) |
6 |
|
fofn |
⊢ ( 𝐹 : ∪ 𝐽 –onto→ 𝑌 → 𝐹 Fn ∪ 𝐽 ) |
7 |
5 6
|
syl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → 𝐹 Fn ∪ 𝐽 ) |
8 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
9 |
8
|
qtoptop |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 Fn ∪ 𝐽 ) → ( 𝐽 qTop 𝐹 ) ∈ Top ) |
10 |
1 7 9
|
syl2an2r |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝐽 qTop 𝐹 ) ∈ Top ) |
11 |
8
|
qtopuni |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 –onto→ 𝑌 ) → 𝑌 = ∪ ( 𝐽 qTop 𝐹 ) ) |
12 |
1 5 11
|
syl2an2r |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → 𝑌 = ∪ ( 𝐽 qTop 𝐹 ) ) |
13 |
|
istopon |
⊢ ( ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ↔ ( ( 𝐽 qTop 𝐹 ) ∈ Top ∧ 𝑌 = ∪ ( 𝐽 qTop 𝐹 ) ) ) |
14 |
10 12 13
|
sylanbrc |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ) |