Metamath Proof Explorer


Theorem qtopval

Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 23-Mar-2015)

Ref Expression
Hypothesis qtopval.1 𝑋 = 𝐽
Assertion qtopval ( ( 𝐽𝑉𝐹𝑊 ) → ( 𝐽 qTop 𝐹 ) = { 𝑠 ∈ 𝒫 ( 𝐹𝑋 ) ∣ ( ( 𝐹𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } )

Proof

Step Hyp Ref Expression
1 qtopval.1 𝑋 = 𝐽
2 elex ( 𝐽𝑉𝐽 ∈ V )
3 elex ( 𝐹𝑊𝐹 ∈ V )
4 imaexg ( 𝐹 ∈ V → ( 𝐹𝑋 ) ∈ V )
5 pwexg ( ( 𝐹𝑋 ) ∈ V → 𝒫 ( 𝐹𝑋 ) ∈ V )
6 rabexg ( 𝒫 ( 𝐹𝑋 ) ∈ V → { 𝑠 ∈ 𝒫 ( 𝐹𝑋 ) ∣ ( ( 𝐹𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } ∈ V )
7 4 5 6 3syl ( 𝐹 ∈ V → { 𝑠 ∈ 𝒫 ( 𝐹𝑋 ) ∣ ( ( 𝐹𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } ∈ V )
8 7 adantl ( ( 𝐽 ∈ V ∧ 𝐹 ∈ V ) → { 𝑠 ∈ 𝒫 ( 𝐹𝑋 ) ∣ ( ( 𝐹𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } ∈ V )
9 simpr ( ( 𝑗 = 𝐽𝑓 = 𝐹 ) → 𝑓 = 𝐹 )
10 simpl ( ( 𝑗 = 𝐽𝑓 = 𝐹 ) → 𝑗 = 𝐽 )
11 10 unieqd ( ( 𝑗 = 𝐽𝑓 = 𝐹 ) → 𝑗 = 𝐽 )
12 11 1 eqtr4di ( ( 𝑗 = 𝐽𝑓 = 𝐹 ) → 𝑗 = 𝑋 )
13 9 12 imaeq12d ( ( 𝑗 = 𝐽𝑓 = 𝐹 ) → ( 𝑓 𝑗 ) = ( 𝐹𝑋 ) )
14 13 pweqd ( ( 𝑗 = 𝐽𝑓 = 𝐹 ) → 𝒫 ( 𝑓 𝑗 ) = 𝒫 ( 𝐹𝑋 ) )
15 9 cnveqd ( ( 𝑗 = 𝐽𝑓 = 𝐹 ) → 𝑓 = 𝐹 )
16 15 imaeq1d ( ( 𝑗 = 𝐽𝑓 = 𝐹 ) → ( 𝑓𝑠 ) = ( 𝐹𝑠 ) )
17 16 12 ineq12d ( ( 𝑗 = 𝐽𝑓 = 𝐹 ) → ( ( 𝑓𝑠 ) ∩ 𝑗 ) = ( ( 𝐹𝑠 ) ∩ 𝑋 ) )
18 17 10 eleq12d ( ( 𝑗 = 𝐽𝑓 = 𝐹 ) → ( ( ( 𝑓𝑠 ) ∩ 𝑗 ) ∈ 𝑗 ↔ ( ( 𝐹𝑠 ) ∩ 𝑋 ) ∈ 𝐽 ) )
19 14 18 rabeqbidv ( ( 𝑗 = 𝐽𝑓 = 𝐹 ) → { 𝑠 ∈ 𝒫 ( 𝑓 𝑗 ) ∣ ( ( 𝑓𝑠 ) ∩ 𝑗 ) ∈ 𝑗 } = { 𝑠 ∈ 𝒫 ( 𝐹𝑋 ) ∣ ( ( 𝐹𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } )
20 df-qtop qTop = ( 𝑗 ∈ V , 𝑓 ∈ V ↦ { 𝑠 ∈ 𝒫 ( 𝑓 𝑗 ) ∣ ( ( 𝑓𝑠 ) ∩ 𝑗 ) ∈ 𝑗 } )
21 19 20 ovmpoga ( ( 𝐽 ∈ V ∧ 𝐹 ∈ V ∧ { 𝑠 ∈ 𝒫 ( 𝐹𝑋 ) ∣ ( ( 𝐹𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } ∈ V ) → ( 𝐽 qTop 𝐹 ) = { 𝑠 ∈ 𝒫 ( 𝐹𝑋 ) ∣ ( ( 𝐹𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } )
22 8 21 mpd3an3 ( ( 𝐽 ∈ V ∧ 𝐹 ∈ V ) → ( 𝐽 qTop 𝐹 ) = { 𝑠 ∈ 𝒫 ( 𝐹𝑋 ) ∣ ( ( 𝐹𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } )
23 2 3 22 syl2an ( ( 𝐽𝑉𝐹𝑊 ) → ( 𝐽 qTop 𝐹 ) = { 𝑠 ∈ 𝒫 ( 𝐹𝑋 ) ∣ ( ( 𝐹𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } )