Step |
Hyp |
Ref |
Expression |
1 |
|
quad.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
quad.z |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
3 |
|
quad.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
4 |
|
quad.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
5 |
|
quad.x |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
6 |
|
quad.d |
⊢ ( 𝜑 → 𝐷 = ( ( 𝐵 ↑ 2 ) − ( 4 · ( 𝐴 · 𝐶 ) ) ) ) |
7 |
3
|
sqcld |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
8 |
|
4cn |
⊢ 4 ∈ ℂ |
9 |
1 4
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐶 ) ∈ ℂ ) |
10 |
|
mulcl |
⊢ ( ( 4 ∈ ℂ ∧ ( 𝐴 · 𝐶 ) ∈ ℂ ) → ( 4 · ( 𝐴 · 𝐶 ) ) ∈ ℂ ) |
11 |
8 9 10
|
sylancr |
⊢ ( 𝜑 → ( 4 · ( 𝐴 · 𝐶 ) ) ∈ ℂ ) |
12 |
7 11
|
subcld |
⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) − ( 4 · ( 𝐴 · 𝐶 ) ) ) ∈ ℂ ) |
13 |
6 12
|
eqeltrd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
14 |
13
|
sqrtcld |
⊢ ( 𝜑 → ( √ ‘ 𝐷 ) ∈ ℂ ) |
15 |
13
|
sqsqrtd |
⊢ ( 𝜑 → ( ( √ ‘ 𝐷 ) ↑ 2 ) = 𝐷 ) |
16 |
15 6
|
eqtrd |
⊢ ( 𝜑 → ( ( √ ‘ 𝐷 ) ↑ 2 ) = ( ( 𝐵 ↑ 2 ) − ( 4 · ( 𝐴 · 𝐶 ) ) ) ) |
17 |
1 2 3 4 5 14 16
|
quad2 |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( ( 𝐵 · 𝑋 ) + 𝐶 ) ) = 0 ↔ ( 𝑋 = ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ∨ 𝑋 = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ) ) ) |