| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							quart.a | 
							⊢ ( 𝜑  →  𝐴  ∈  ℂ )  | 
						
						
							| 2 | 
							
								
							 | 
							quart.b | 
							⊢ ( 𝜑  →  𝐵  ∈  ℂ )  | 
						
						
							| 3 | 
							
								
							 | 
							quart.c | 
							⊢ ( 𝜑  →  𝐶  ∈  ℂ )  | 
						
						
							| 4 | 
							
								
							 | 
							quart.d | 
							⊢ ( 𝜑  →  𝐷  ∈  ℂ )  | 
						
						
							| 5 | 
							
								
							 | 
							quart.x | 
							⊢ ( 𝜑  →  𝑋  ∈  ℂ )  | 
						
						
							| 6 | 
							
								
							 | 
							quart.e | 
							⊢ ( 𝜑  →  𝐸  =  - ( 𝐴  /  4 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							quart.p | 
							⊢ ( 𝜑  →  𝑃  =  ( 𝐵  −  ( ( 3  /  8 )  ·  ( 𝐴 ↑ 2 ) ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							quart.q | 
							⊢ ( 𝜑  →  𝑄  =  ( ( 𝐶  −  ( ( 𝐴  ·  𝐵 )  /  2 ) )  +  ( ( 𝐴 ↑ 3 )  /  8 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							quart.r | 
							⊢ ( 𝜑  →  𝑅  =  ( ( 𝐷  −  ( ( 𝐶  ·  𝐴 )  /  4 ) )  +  ( ( ( ( 𝐴 ↑ 2 )  ·  𝐵 )  /  ; 1 6 )  −  ( ( 3  /  ; ; 2 5 6 )  ·  ( 𝐴 ↑ 4 ) ) ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							quart.u | 
							⊢ ( 𝜑  →  𝑈  =  ( ( 𝑃 ↑ 2 )  +  ( ; 1 2  ·  𝑅 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							quart.v | 
							⊢ ( 𝜑  →  𝑉  =  ( ( - ( 2  ·  ( 𝑃 ↑ 3 ) )  −  ( ; 2 7  ·  ( 𝑄 ↑ 2 ) ) )  +  ( ; 7 2  ·  ( 𝑃  ·  𝑅 ) ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							quart.w | 
							⊢ ( 𝜑  →  𝑊  =  ( √ ‘ ( ( 𝑉 ↑ 2 )  −  ( 4  ·  ( 𝑈 ↑ 3 ) ) ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							quart.s | 
							⊢ ( 𝜑  →  𝑆  =  ( ( √ ‘ 𝑀 )  /  2 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							quart.m | 
							⊢ ( 𝜑  →  𝑀  =  - ( ( ( ( 2  ·  𝑃 )  +  𝑇 )  +  ( 𝑈  /  𝑇 ) )  /  3 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							quart.t | 
							⊢ ( 𝜑  →  𝑇  =  ( ( ( 𝑉  +  𝑊 )  /  2 ) ↑𝑐 ( 1  /  3 ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							quart.t0 | 
							⊢ ( 𝜑  →  𝑇  ≠  0 )  | 
						
						
							| 17 | 
							
								
							 | 
							quart.m0 | 
							⊢ ( 𝜑  →  𝑀  ≠  0 )  | 
						
						
							| 18 | 
							
								
							 | 
							quart.i | 
							⊢ ( 𝜑  →  𝐼  =  ( √ ‘ ( ( - ( 𝑆 ↑ 2 )  −  ( 𝑃  /  2 ) )  +  ( ( 𝑄  /  4 )  /  𝑆 ) ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							quart.j | 
							⊢ ( 𝜑  →  𝐽  =  ( √ ‘ ( ( - ( 𝑆 ↑ 2 )  −  ( 𝑃  /  2 ) )  −  ( ( 𝑄  /  4 )  /  𝑆 ) ) ) )  | 
						
						
							| 20 | 
							
								6
							 | 
							oveq2d | 
							⊢ ( 𝜑  →  ( 𝑋  −  𝐸 )  =  ( 𝑋  −  - ( 𝐴  /  4 ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							4cn | 
							⊢ 4  ∈  ℂ  | 
						
						
							| 22 | 
							
								21
							 | 
							a1i | 
							⊢ ( 𝜑  →  4  ∈  ℂ )  | 
						
						
							| 23 | 
							
								
							 | 
							4ne0 | 
							⊢ 4  ≠  0  | 
						
						
							| 24 | 
							
								23
							 | 
							a1i | 
							⊢ ( 𝜑  →  4  ≠  0 )  | 
						
						
							| 25 | 
							
								1 22 24
							 | 
							divcld | 
							⊢ ( 𝜑  →  ( 𝐴  /  4 )  ∈  ℂ )  | 
						
						
							| 26 | 
							
								5 25
							 | 
							subnegd | 
							⊢ ( 𝜑  →  ( 𝑋  −  - ( 𝐴  /  4 ) )  =  ( 𝑋  +  ( 𝐴  /  4 ) ) )  | 
						
						
							| 27 | 
							
								20 26
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( 𝑋  −  𝐸 )  =  ( 𝑋  +  ( 𝐴  /  4 ) ) )  | 
						
						
							| 28 | 
							
								1 2 3 4 7 8 9 5 27
							 | 
							quart1 | 
							⊢ ( 𝜑  →  ( ( ( 𝑋 ↑ 4 )  +  ( 𝐴  ·  ( 𝑋 ↑ 3 ) ) )  +  ( ( 𝐵  ·  ( 𝑋 ↑ 2 ) )  +  ( ( 𝐶  ·  𝑋 )  +  𝐷 ) ) )  =  ( ( ( ( 𝑋  −  𝐸 ) ↑ 4 )  +  ( 𝑃  ·  ( ( 𝑋  −  𝐸 ) ↑ 2 ) ) )  +  ( ( 𝑄  ·  ( 𝑋  −  𝐸 ) )  +  𝑅 ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							eqeq1d | 
							⊢ ( 𝜑  →  ( ( ( ( 𝑋 ↑ 4 )  +  ( 𝐴  ·  ( 𝑋 ↑ 3 ) ) )  +  ( ( 𝐵  ·  ( 𝑋 ↑ 2 ) )  +  ( ( 𝐶  ·  𝑋 )  +  𝐷 ) ) )  =  0  ↔  ( ( ( ( 𝑋  −  𝐸 ) ↑ 4 )  +  ( 𝑃  ·  ( ( 𝑋  −  𝐸 ) ↑ 2 ) ) )  +  ( ( 𝑄  ·  ( 𝑋  −  𝐸 ) )  +  𝑅 ) )  =  0 ) )  | 
						
						
							| 30 | 
							
								1 2 3 4 7 8 9
							 | 
							quart1cl | 
							⊢ ( 𝜑  →  ( 𝑃  ∈  ℂ  ∧  𝑄  ∈  ℂ  ∧  𝑅  ∈  ℂ ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							simp1d | 
							⊢ ( 𝜑  →  𝑃  ∈  ℂ )  | 
						
						
							| 32 | 
							
								30
							 | 
							simp2d | 
							⊢ ( 𝜑  →  𝑄  ∈  ℂ )  | 
						
						
							| 33 | 
							
								25
							 | 
							negcld | 
							⊢ ( 𝜑  →  - ( 𝐴  /  4 )  ∈  ℂ )  | 
						
						
							| 34 | 
							
								6 33
							 | 
							eqeltrd | 
							⊢ ( 𝜑  →  𝐸  ∈  ℂ )  | 
						
						
							| 35 | 
							
								5 34
							 | 
							subcld | 
							⊢ ( 𝜑  →  ( 𝑋  −  𝐸 )  ∈  ℂ )  | 
						
						
							| 36 | 
							
								1 2 3 4 1 6 7 8 9 10 11 12 13 14 15 16
							 | 
							quartlem3 | 
							⊢ ( 𝜑  →  ( 𝑆  ∈  ℂ  ∧  𝑀  ∈  ℂ  ∧  𝑇  ∈  ℂ ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							simp1d | 
							⊢ ( 𝜑  →  𝑆  ∈  ℂ )  | 
						
						
							| 38 | 
							
								13
							 | 
							oveq2d | 
							⊢ ( 𝜑  →  ( 2  ·  𝑆 )  =  ( 2  ·  ( ( √ ‘ 𝑀 )  /  2 ) ) )  | 
						
						
							| 39 | 
							
								36
							 | 
							simp2d | 
							⊢ ( 𝜑  →  𝑀  ∈  ℂ )  | 
						
						
							| 40 | 
							
								39
							 | 
							sqrtcld | 
							⊢ ( 𝜑  →  ( √ ‘ 𝑀 )  ∈  ℂ )  | 
						
						
							| 41 | 
							
								
							 | 
							2cnd | 
							⊢ ( 𝜑  →  2  ∈  ℂ )  | 
						
						
							| 42 | 
							
								
							 | 
							2ne0 | 
							⊢ 2  ≠  0  | 
						
						
							| 43 | 
							
								42
							 | 
							a1i | 
							⊢ ( 𝜑  →  2  ≠  0 )  | 
						
						
							| 44 | 
							
								40 41 43
							 | 
							divcan2d | 
							⊢ ( 𝜑  →  ( 2  ·  ( ( √ ‘ 𝑀 )  /  2 ) )  =  ( √ ‘ 𝑀 ) )  | 
						
						
							| 45 | 
							
								38 44
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( 2  ·  𝑆 )  =  ( √ ‘ 𝑀 ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							oveq1d | 
							⊢ ( 𝜑  →  ( ( 2  ·  𝑆 ) ↑ 2 )  =  ( ( √ ‘ 𝑀 ) ↑ 2 ) )  | 
						
						
							| 47 | 
							
								39
							 | 
							sqsqrtd | 
							⊢ ( 𝜑  →  ( ( √ ‘ 𝑀 ) ↑ 2 )  =  𝑀 )  | 
						
						
							| 48 | 
							
								46 47
							 | 
							eqtr2d | 
							⊢ ( 𝜑  →  𝑀  =  ( ( 2  ·  𝑆 ) ↑ 2 ) )  | 
						
						
							| 49 | 
							
								1 2 3 4 1 6 7 8 9 10 11 12 13 14 15 16 17 18 19
							 | 
							quartlem4 | 
							⊢ ( 𝜑  →  ( 𝑆  ≠  0  ∧  𝐼  ∈  ℂ  ∧  𝐽  ∈  ℂ ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							simp2d | 
							⊢ ( 𝜑  →  𝐼  ∈  ℂ )  | 
						
						
							| 51 | 
							
								18
							 | 
							oveq1d | 
							⊢ ( 𝜑  →  ( 𝐼 ↑ 2 )  =  ( ( √ ‘ ( ( - ( 𝑆 ↑ 2 )  −  ( 𝑃  /  2 ) )  +  ( ( 𝑄  /  4 )  /  𝑆 ) ) ) ↑ 2 ) )  | 
						
						
							| 52 | 
							
								37
							 | 
							sqcld | 
							⊢ ( 𝜑  →  ( 𝑆 ↑ 2 )  ∈  ℂ )  | 
						
						
							| 53 | 
							
								52
							 | 
							negcld | 
							⊢ ( 𝜑  →  - ( 𝑆 ↑ 2 )  ∈  ℂ )  | 
						
						
							| 54 | 
							
								31
							 | 
							halfcld | 
							⊢ ( 𝜑  →  ( 𝑃  /  2 )  ∈  ℂ )  | 
						
						
							| 55 | 
							
								53 54
							 | 
							subcld | 
							⊢ ( 𝜑  →  ( - ( 𝑆 ↑ 2 )  −  ( 𝑃  /  2 ) )  ∈  ℂ )  | 
						
						
							| 56 | 
							
								32 22 24
							 | 
							divcld | 
							⊢ ( 𝜑  →  ( 𝑄  /  4 )  ∈  ℂ )  | 
						
						
							| 57 | 
							
								49
							 | 
							simp1d | 
							⊢ ( 𝜑  →  𝑆  ≠  0 )  | 
						
						
							| 58 | 
							
								56 37 57
							 | 
							divcld | 
							⊢ ( 𝜑  →  ( ( 𝑄  /  4 )  /  𝑆 )  ∈  ℂ )  | 
						
						
							| 59 | 
							
								55 58
							 | 
							addcld | 
							⊢ ( 𝜑  →  ( ( - ( 𝑆 ↑ 2 )  −  ( 𝑃  /  2 ) )  +  ( ( 𝑄  /  4 )  /  𝑆 ) )  ∈  ℂ )  | 
						
						
							| 60 | 
							
								59
							 | 
							sqsqrtd | 
							⊢ ( 𝜑  →  ( ( √ ‘ ( ( - ( 𝑆 ↑ 2 )  −  ( 𝑃  /  2 ) )  +  ( ( 𝑄  /  4 )  /  𝑆 ) ) ) ↑ 2 )  =  ( ( - ( 𝑆 ↑ 2 )  −  ( 𝑃  /  2 ) )  +  ( ( 𝑄  /  4 )  /  𝑆 ) ) )  | 
						
						
							| 61 | 
							
								51 60
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( 𝐼 ↑ 2 )  =  ( ( - ( 𝑆 ↑ 2 )  −  ( 𝑃  /  2 ) )  +  ( ( 𝑄  /  4 )  /  𝑆 ) ) )  | 
						
						
							| 62 | 
							
								30
							 | 
							simp3d | 
							⊢ ( 𝜑  →  𝑅  ∈  ℂ )  | 
						
						
							| 63 | 
							
								
							 | 
							1cnd | 
							⊢ ( 𝜑  →  1  ∈  ℂ )  | 
						
						
							| 64 | 
							
								
							 | 
							3z | 
							⊢ 3  ∈  ℤ  | 
						
						
							| 65 | 
							
								
							 | 
							1exp | 
							⊢ ( 3  ∈  ℤ  →  ( 1 ↑ 3 )  =  1 )  | 
						
						
							| 66 | 
							
								64 65
							 | 
							mp1i | 
							⊢ ( 𝜑  →  ( 1 ↑ 3 )  =  1 )  | 
						
						
							| 67 | 
							
								36
							 | 
							simp3d | 
							⊢ ( 𝜑  →  𝑇  ∈  ℂ )  | 
						
						
							| 68 | 
							
								67
							 | 
							mullidd | 
							⊢ ( 𝜑  →  ( 1  ·  𝑇 )  =  𝑇 )  | 
						
						
							| 69 | 
							
								68
							 | 
							oveq2d | 
							⊢ ( 𝜑  →  ( ( 2  ·  𝑃 )  +  ( 1  ·  𝑇 ) )  =  ( ( 2  ·  𝑃 )  +  𝑇 ) )  | 
						
						
							| 70 | 
							
								68
							 | 
							oveq2d | 
							⊢ ( 𝜑  →  ( 𝑈  /  ( 1  ·  𝑇 ) )  =  ( 𝑈  /  𝑇 ) )  | 
						
						
							| 71 | 
							
								69 70
							 | 
							oveq12d | 
							⊢ ( 𝜑  →  ( ( ( 2  ·  𝑃 )  +  ( 1  ·  𝑇 ) )  +  ( 𝑈  /  ( 1  ·  𝑇 ) ) )  =  ( ( ( 2  ·  𝑃 )  +  𝑇 )  +  ( 𝑈  /  𝑇 ) ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							oveq1d | 
							⊢ ( 𝜑  →  ( ( ( ( 2  ·  𝑃 )  +  ( 1  ·  𝑇 ) )  +  ( 𝑈  /  ( 1  ·  𝑇 ) ) )  /  3 )  =  ( ( ( ( 2  ·  𝑃 )  +  𝑇 )  +  ( 𝑈  /  𝑇 ) )  /  3 ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							negeqd | 
							⊢ ( 𝜑  →  - ( ( ( ( 2  ·  𝑃 )  +  ( 1  ·  𝑇 ) )  +  ( 𝑈  /  ( 1  ·  𝑇 ) ) )  /  3 )  =  - ( ( ( ( 2  ·  𝑃 )  +  𝑇 )  +  ( 𝑈  /  𝑇 ) )  /  3 ) )  | 
						
						
							| 74 | 
							
								14 73
							 | 
							eqtr4d | 
							⊢ ( 𝜑  →  𝑀  =  - ( ( ( ( 2  ·  𝑃 )  +  ( 1  ·  𝑇 ) )  +  ( 𝑈  /  ( 1  ·  𝑇 ) ) )  /  3 ) )  | 
						
						
							| 75 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑥  =  1  →  ( 𝑥 ↑ 3 )  =  ( 1 ↑ 3 ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							eqeq1d | 
							⊢ ( 𝑥  =  1  →  ( ( 𝑥 ↑ 3 )  =  1  ↔  ( 1 ↑ 3 )  =  1 ) )  | 
						
						
							| 77 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑥  =  1  →  ( 𝑥  ·  𝑇 )  =  ( 1  ·  𝑇 ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							oveq2d | 
							⊢ ( 𝑥  =  1  →  ( ( 2  ·  𝑃 )  +  ( 𝑥  ·  𝑇 ) )  =  ( ( 2  ·  𝑃 )  +  ( 1  ·  𝑇 ) ) )  | 
						
						
							| 79 | 
							
								77
							 | 
							oveq2d | 
							⊢ ( 𝑥  =  1  →  ( 𝑈  /  ( 𝑥  ·  𝑇 ) )  =  ( 𝑈  /  ( 1  ·  𝑇 ) ) )  | 
						
						
							| 80 | 
							
								78 79
							 | 
							oveq12d | 
							⊢ ( 𝑥  =  1  →  ( ( ( 2  ·  𝑃 )  +  ( 𝑥  ·  𝑇 ) )  +  ( 𝑈  /  ( 𝑥  ·  𝑇 ) ) )  =  ( ( ( 2  ·  𝑃 )  +  ( 1  ·  𝑇 ) )  +  ( 𝑈  /  ( 1  ·  𝑇 ) ) ) )  | 
						
						
							| 81 | 
							
								80
							 | 
							oveq1d | 
							⊢ ( 𝑥  =  1  →  ( ( ( ( 2  ·  𝑃 )  +  ( 𝑥  ·  𝑇 ) )  +  ( 𝑈  /  ( 𝑥  ·  𝑇 ) ) )  /  3 )  =  ( ( ( ( 2  ·  𝑃 )  +  ( 1  ·  𝑇 ) )  +  ( 𝑈  /  ( 1  ·  𝑇 ) ) )  /  3 ) )  | 
						
						
							| 82 | 
							
								81
							 | 
							negeqd | 
							⊢ ( 𝑥  =  1  →  - ( ( ( ( 2  ·  𝑃 )  +  ( 𝑥  ·  𝑇 ) )  +  ( 𝑈  /  ( 𝑥  ·  𝑇 ) ) )  /  3 )  =  - ( ( ( ( 2  ·  𝑃 )  +  ( 1  ·  𝑇 ) )  +  ( 𝑈  /  ( 1  ·  𝑇 ) ) )  /  3 ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							eqeq2d | 
							⊢ ( 𝑥  =  1  →  ( 𝑀  =  - ( ( ( ( 2  ·  𝑃 )  +  ( 𝑥  ·  𝑇 ) )  +  ( 𝑈  /  ( 𝑥  ·  𝑇 ) ) )  /  3 )  ↔  𝑀  =  - ( ( ( ( 2  ·  𝑃 )  +  ( 1  ·  𝑇 ) )  +  ( 𝑈  /  ( 1  ·  𝑇 ) ) )  /  3 ) ) )  | 
						
						
							| 84 | 
							
								76 83
							 | 
							anbi12d | 
							⊢ ( 𝑥  =  1  →  ( ( ( 𝑥 ↑ 3 )  =  1  ∧  𝑀  =  - ( ( ( ( 2  ·  𝑃 )  +  ( 𝑥  ·  𝑇 ) )  +  ( 𝑈  /  ( 𝑥  ·  𝑇 ) ) )  /  3 ) )  ↔  ( ( 1 ↑ 3 )  =  1  ∧  𝑀  =  - ( ( ( ( 2  ·  𝑃 )  +  ( 1  ·  𝑇 ) )  +  ( 𝑈  /  ( 1  ·  𝑇 ) ) )  /  3 ) ) ) )  | 
						
						
							| 85 | 
							
								84
							 | 
							rspcev | 
							⊢ ( ( 1  ∈  ℂ  ∧  ( ( 1 ↑ 3 )  =  1  ∧  𝑀  =  - ( ( ( ( 2  ·  𝑃 )  +  ( 1  ·  𝑇 ) )  +  ( 𝑈  /  ( 1  ·  𝑇 ) ) )  /  3 ) ) )  →  ∃ 𝑥  ∈  ℂ ( ( 𝑥 ↑ 3 )  =  1  ∧  𝑀  =  - ( ( ( ( 2  ·  𝑃 )  +  ( 𝑥  ·  𝑇 ) )  +  ( 𝑈  /  ( 𝑥  ·  𝑇 ) ) )  /  3 ) ) )  | 
						
						
							| 86 | 
							
								63 66 74 85
							 | 
							syl12anc | 
							⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℂ ( ( 𝑥 ↑ 3 )  =  1  ∧  𝑀  =  - ( ( ( ( 2  ·  𝑃 )  +  ( 𝑥  ·  𝑇 ) )  +  ( 𝑈  /  ( 𝑥  ·  𝑇 ) ) )  /  3 ) ) )  | 
						
						
							| 87 | 
							
								
							 | 
							2cn | 
							⊢ 2  ∈  ℂ  | 
						
						
							| 88 | 
							
								
							 | 
							mulcl | 
							⊢ ( ( 2  ∈  ℂ  ∧  𝑃  ∈  ℂ )  →  ( 2  ·  𝑃 )  ∈  ℂ )  | 
						
						
							| 89 | 
							
								87 31 88
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( 2  ·  𝑃 )  ∈  ℂ )  | 
						
						
							| 90 | 
							
								31
							 | 
							sqcld | 
							⊢ ( 𝜑  →  ( 𝑃 ↑ 2 )  ∈  ℂ )  | 
						
						
							| 91 | 
							
								
							 | 
							mulcl | 
							⊢ ( ( 4  ∈  ℂ  ∧  𝑅  ∈  ℂ )  →  ( 4  ·  𝑅 )  ∈  ℂ )  | 
						
						
							| 92 | 
							
								21 62 91
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( 4  ·  𝑅 )  ∈  ℂ )  | 
						
						
							| 93 | 
							
								90 92
							 | 
							subcld | 
							⊢ ( 𝜑  →  ( ( 𝑃 ↑ 2 )  −  ( 4  ·  𝑅 ) )  ∈  ℂ )  | 
						
						
							| 94 | 
							
								32
							 | 
							sqcld | 
							⊢ ( 𝜑  →  ( 𝑄 ↑ 2 )  ∈  ℂ )  | 
						
						
							| 95 | 
							
								94
							 | 
							negcld | 
							⊢ ( 𝜑  →  - ( 𝑄 ↑ 2 )  ∈  ℂ )  | 
						
						
							| 96 | 
							
								15
							 | 
							oveq1d | 
							⊢ ( 𝜑  →  ( 𝑇 ↑ 3 )  =  ( ( ( ( 𝑉  +  𝑊 )  /  2 ) ↑𝑐 ( 1  /  3 ) ) ↑ 3 ) )  | 
						
						
							| 97 | 
							
								1 2 3 4 1 6 7 8 9 10 11 12
							 | 
							quartlem2 | 
							⊢ ( 𝜑  →  ( 𝑈  ∈  ℂ  ∧  𝑉  ∈  ℂ  ∧  𝑊  ∈  ℂ ) )  | 
						
						
							| 98 | 
							
								97
							 | 
							simp2d | 
							⊢ ( 𝜑  →  𝑉  ∈  ℂ )  | 
						
						
							| 99 | 
							
								97
							 | 
							simp3d | 
							⊢ ( 𝜑  →  𝑊  ∈  ℂ )  | 
						
						
							| 100 | 
							
								98 99
							 | 
							addcld | 
							⊢ ( 𝜑  →  ( 𝑉  +  𝑊 )  ∈  ℂ )  | 
						
						
							| 101 | 
							
								100
							 | 
							halfcld | 
							⊢ ( 𝜑  →  ( ( 𝑉  +  𝑊 )  /  2 )  ∈  ℂ )  | 
						
						
							| 102 | 
							
								
							 | 
							3nn | 
							⊢ 3  ∈  ℕ  | 
						
						
							| 103 | 
							
								
							 | 
							cxproot | 
							⊢ ( ( ( ( 𝑉  +  𝑊 )  /  2 )  ∈  ℂ  ∧  3  ∈  ℕ )  →  ( ( ( ( 𝑉  +  𝑊 )  /  2 ) ↑𝑐 ( 1  /  3 ) ) ↑ 3 )  =  ( ( 𝑉  +  𝑊 )  /  2 ) )  | 
						
						
							| 104 | 
							
								101 102 103
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( ( ( ( 𝑉  +  𝑊 )  /  2 ) ↑𝑐 ( 1  /  3 ) ) ↑ 3 )  =  ( ( 𝑉  +  𝑊 )  /  2 ) )  | 
						
						
							| 105 | 
							
								96 104
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( 𝑇 ↑ 3 )  =  ( ( 𝑉  +  𝑊 )  /  2 ) )  | 
						
						
							| 106 | 
							
								12
							 | 
							oveq1d | 
							⊢ ( 𝜑  →  ( 𝑊 ↑ 2 )  =  ( ( √ ‘ ( ( 𝑉 ↑ 2 )  −  ( 4  ·  ( 𝑈 ↑ 3 ) ) ) ) ↑ 2 ) )  | 
						
						
							| 107 | 
							
								98
							 | 
							sqcld | 
							⊢ ( 𝜑  →  ( 𝑉 ↑ 2 )  ∈  ℂ )  | 
						
						
							| 108 | 
							
								97
							 | 
							simp1d | 
							⊢ ( 𝜑  →  𝑈  ∈  ℂ )  | 
						
						
							| 109 | 
							
								
							 | 
							3nn0 | 
							⊢ 3  ∈  ℕ0  | 
						
						
							| 110 | 
							
								
							 | 
							expcl | 
							⊢ ( ( 𝑈  ∈  ℂ  ∧  3  ∈  ℕ0 )  →  ( 𝑈 ↑ 3 )  ∈  ℂ )  | 
						
						
							| 111 | 
							
								108 109 110
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( 𝑈 ↑ 3 )  ∈  ℂ )  | 
						
						
							| 112 | 
							
								
							 | 
							mulcl | 
							⊢ ( ( 4  ∈  ℂ  ∧  ( 𝑈 ↑ 3 )  ∈  ℂ )  →  ( 4  ·  ( 𝑈 ↑ 3 ) )  ∈  ℂ )  | 
						
						
							| 113 | 
							
								21 111 112
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( 4  ·  ( 𝑈 ↑ 3 ) )  ∈  ℂ )  | 
						
						
							| 114 | 
							
								107 113
							 | 
							subcld | 
							⊢ ( 𝜑  →  ( ( 𝑉 ↑ 2 )  −  ( 4  ·  ( 𝑈 ↑ 3 ) ) )  ∈  ℂ )  | 
						
						
							| 115 | 
							
								114
							 | 
							sqsqrtd | 
							⊢ ( 𝜑  →  ( ( √ ‘ ( ( 𝑉 ↑ 2 )  −  ( 4  ·  ( 𝑈 ↑ 3 ) ) ) ) ↑ 2 )  =  ( ( 𝑉 ↑ 2 )  −  ( 4  ·  ( 𝑈 ↑ 3 ) ) ) )  | 
						
						
							| 116 | 
							
								106 115
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( 𝑊 ↑ 2 )  =  ( ( 𝑉 ↑ 2 )  −  ( 4  ·  ( 𝑈 ↑ 3 ) ) ) )  | 
						
						
							| 117 | 
							
								31 32 62 10 11
							 | 
							quartlem1 | 
							⊢ ( 𝜑  →  ( 𝑈  =  ( ( ( 2  ·  𝑃 ) ↑ 2 )  −  ( 3  ·  ( ( 𝑃 ↑ 2 )  −  ( 4  ·  𝑅 ) ) ) )  ∧  𝑉  =  ( ( ( 2  ·  ( ( 2  ·  𝑃 ) ↑ 3 ) )  −  ( 9  ·  ( ( 2  ·  𝑃 )  ·  ( ( 𝑃 ↑ 2 )  −  ( 4  ·  𝑅 ) ) ) ) )  +  ( ; 2 7  ·  - ( 𝑄 ↑ 2 ) ) ) ) )  | 
						
						
							| 118 | 
							
								117
							 | 
							simpld | 
							⊢ ( 𝜑  →  𝑈  =  ( ( ( 2  ·  𝑃 ) ↑ 2 )  −  ( 3  ·  ( ( 𝑃 ↑ 2 )  −  ( 4  ·  𝑅 ) ) ) ) )  | 
						
						
							| 119 | 
							
								117
							 | 
							simprd | 
							⊢ ( 𝜑  →  𝑉  =  ( ( ( 2  ·  ( ( 2  ·  𝑃 ) ↑ 3 ) )  −  ( 9  ·  ( ( 2  ·  𝑃 )  ·  ( ( 𝑃 ↑ 2 )  −  ( 4  ·  𝑅 ) ) ) ) )  +  ( ; 2 7  ·  - ( 𝑄 ↑ 2 ) ) ) )  | 
						
						
							| 120 | 
							
								89 93 95 39 67 105 99 116 118 119 16
							 | 
							mcubic | 
							⊢ ( 𝜑  →  ( ( ( ( 𝑀 ↑ 3 )  +  ( ( 2  ·  𝑃 )  ·  ( 𝑀 ↑ 2 ) ) )  +  ( ( ( ( 𝑃 ↑ 2 )  −  ( 4  ·  𝑅 ) )  ·  𝑀 )  +  - ( 𝑄 ↑ 2 ) ) )  =  0  ↔  ∃ 𝑥  ∈  ℂ ( ( 𝑥 ↑ 3 )  =  1  ∧  𝑀  =  - ( ( ( ( 2  ·  𝑃 )  +  ( 𝑥  ·  𝑇 ) )  +  ( 𝑈  /  ( 𝑥  ·  𝑇 ) ) )  /  3 ) ) ) )  | 
						
						
							| 121 | 
							
								86 120
							 | 
							mpbird | 
							⊢ ( 𝜑  →  ( ( ( 𝑀 ↑ 3 )  +  ( ( 2  ·  𝑃 )  ·  ( 𝑀 ↑ 2 ) ) )  +  ( ( ( ( 𝑃 ↑ 2 )  −  ( 4  ·  𝑅 ) )  ·  𝑀 )  +  - ( 𝑄 ↑ 2 ) ) )  =  0 )  | 
						
						
							| 122 | 
							
								49
							 | 
							simp3d | 
							⊢ ( 𝜑  →  𝐽  ∈  ℂ )  | 
						
						
							| 123 | 
							
								19
							 | 
							oveq1d | 
							⊢ ( 𝜑  →  ( 𝐽 ↑ 2 )  =  ( ( √ ‘ ( ( - ( 𝑆 ↑ 2 )  −  ( 𝑃  /  2 ) )  −  ( ( 𝑄  /  4 )  /  𝑆 ) ) ) ↑ 2 ) )  | 
						
						
							| 124 | 
							
								55 58
							 | 
							subcld | 
							⊢ ( 𝜑  →  ( ( - ( 𝑆 ↑ 2 )  −  ( 𝑃  /  2 ) )  −  ( ( 𝑄  /  4 )  /  𝑆 ) )  ∈  ℂ )  | 
						
						
							| 125 | 
							
								124
							 | 
							sqsqrtd | 
							⊢ ( 𝜑  →  ( ( √ ‘ ( ( - ( 𝑆 ↑ 2 )  −  ( 𝑃  /  2 ) )  −  ( ( 𝑄  /  4 )  /  𝑆 ) ) ) ↑ 2 )  =  ( ( - ( 𝑆 ↑ 2 )  −  ( 𝑃  /  2 ) )  −  ( ( 𝑄  /  4 )  /  𝑆 ) ) )  | 
						
						
							| 126 | 
							
								123 125
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( 𝐽 ↑ 2 )  =  ( ( - ( 𝑆 ↑ 2 )  −  ( 𝑃  /  2 ) )  −  ( ( 𝑄  /  4 )  /  𝑆 ) ) )  | 
						
						
							| 127 | 
							
								31 32 35 37 48 17 50 61 62 121 122 126
							 | 
							dquart | 
							⊢ ( 𝜑  →  ( ( ( ( ( 𝑋  −  𝐸 ) ↑ 4 )  +  ( 𝑃  ·  ( ( 𝑋  −  𝐸 ) ↑ 2 ) ) )  +  ( ( 𝑄  ·  ( 𝑋  −  𝐸 ) )  +  𝑅 ) )  =  0  ↔  ( ( ( 𝑋  −  𝐸 )  =  ( - 𝑆  +  𝐼 )  ∨  ( 𝑋  −  𝐸 )  =  ( - 𝑆  −  𝐼 ) )  ∨  ( ( 𝑋  −  𝐸 )  =  ( 𝑆  +  𝐽 )  ∨  ( 𝑋  −  𝐸 )  =  ( 𝑆  −  𝐽 ) ) ) ) )  | 
						
						
							| 128 | 
							
								37
							 | 
							negcld | 
							⊢ ( 𝜑  →  - 𝑆  ∈  ℂ )  | 
						
						
							| 129 | 
							
								128 50
							 | 
							addcld | 
							⊢ ( 𝜑  →  ( - 𝑆  +  𝐼 )  ∈  ℂ )  | 
						
						
							| 130 | 
							
								5 34 129
							 | 
							subaddd | 
							⊢ ( 𝜑  →  ( ( 𝑋  −  𝐸 )  =  ( - 𝑆  +  𝐼 )  ↔  ( 𝐸  +  ( - 𝑆  +  𝐼 ) )  =  𝑋 ) )  | 
						
						
							| 131 | 
							
								34 37
							 | 
							negsubd | 
							⊢ ( 𝜑  →  ( 𝐸  +  - 𝑆 )  =  ( 𝐸  −  𝑆 ) )  | 
						
						
							| 132 | 
							
								131
							 | 
							oveq1d | 
							⊢ ( 𝜑  →  ( ( 𝐸  +  - 𝑆 )  +  𝐼 )  =  ( ( 𝐸  −  𝑆 )  +  𝐼 ) )  | 
						
						
							| 133 | 
							
								34 128 50
							 | 
							addassd | 
							⊢ ( 𝜑  →  ( ( 𝐸  +  - 𝑆 )  +  𝐼 )  =  ( 𝐸  +  ( - 𝑆  +  𝐼 ) ) )  | 
						
						
							| 134 | 
							
								132 133
							 | 
							eqtr3d | 
							⊢ ( 𝜑  →  ( ( 𝐸  −  𝑆 )  +  𝐼 )  =  ( 𝐸  +  ( - 𝑆  +  𝐼 ) ) )  | 
						
						
							| 135 | 
							
								134
							 | 
							eqeq1d | 
							⊢ ( 𝜑  →  ( ( ( 𝐸  −  𝑆 )  +  𝐼 )  =  𝑋  ↔  ( 𝐸  +  ( - 𝑆  +  𝐼 ) )  =  𝑋 ) )  | 
						
						
							| 136 | 
							
								130 135
							 | 
							bitr4d | 
							⊢ ( 𝜑  →  ( ( 𝑋  −  𝐸 )  =  ( - 𝑆  +  𝐼 )  ↔  ( ( 𝐸  −  𝑆 )  +  𝐼 )  =  𝑋 ) )  | 
						
						
							| 137 | 
							
								
							 | 
							eqcom | 
							⊢ ( ( ( 𝐸  −  𝑆 )  +  𝐼 )  =  𝑋  ↔  𝑋  =  ( ( 𝐸  −  𝑆 )  +  𝐼 ) )  | 
						
						
							| 138 | 
							
								136 137
							 | 
							bitrdi | 
							⊢ ( 𝜑  →  ( ( 𝑋  −  𝐸 )  =  ( - 𝑆  +  𝐼 )  ↔  𝑋  =  ( ( 𝐸  −  𝑆 )  +  𝐼 ) ) )  | 
						
						
							| 139 | 
							
								128 50
							 | 
							subcld | 
							⊢ ( 𝜑  →  ( - 𝑆  −  𝐼 )  ∈  ℂ )  | 
						
						
							| 140 | 
							
								5 34 139
							 | 
							subaddd | 
							⊢ ( 𝜑  →  ( ( 𝑋  −  𝐸 )  =  ( - 𝑆  −  𝐼 )  ↔  ( 𝐸  +  ( - 𝑆  −  𝐼 ) )  =  𝑋 ) )  | 
						
						
							| 141 | 
							
								131
							 | 
							oveq1d | 
							⊢ ( 𝜑  →  ( ( 𝐸  +  - 𝑆 )  −  𝐼 )  =  ( ( 𝐸  −  𝑆 )  −  𝐼 ) )  | 
						
						
							| 142 | 
							
								34 128 50
							 | 
							addsubassd | 
							⊢ ( 𝜑  →  ( ( 𝐸  +  - 𝑆 )  −  𝐼 )  =  ( 𝐸  +  ( - 𝑆  −  𝐼 ) ) )  | 
						
						
							| 143 | 
							
								141 142
							 | 
							eqtr3d | 
							⊢ ( 𝜑  →  ( ( 𝐸  −  𝑆 )  −  𝐼 )  =  ( 𝐸  +  ( - 𝑆  −  𝐼 ) ) )  | 
						
						
							| 144 | 
							
								143
							 | 
							eqeq1d | 
							⊢ ( 𝜑  →  ( ( ( 𝐸  −  𝑆 )  −  𝐼 )  =  𝑋  ↔  ( 𝐸  +  ( - 𝑆  −  𝐼 ) )  =  𝑋 ) )  | 
						
						
							| 145 | 
							
								140 144
							 | 
							bitr4d | 
							⊢ ( 𝜑  →  ( ( 𝑋  −  𝐸 )  =  ( - 𝑆  −  𝐼 )  ↔  ( ( 𝐸  −  𝑆 )  −  𝐼 )  =  𝑋 ) )  | 
						
						
							| 146 | 
							
								
							 | 
							eqcom | 
							⊢ ( ( ( 𝐸  −  𝑆 )  −  𝐼 )  =  𝑋  ↔  𝑋  =  ( ( 𝐸  −  𝑆 )  −  𝐼 ) )  | 
						
						
							| 147 | 
							
								145 146
							 | 
							bitrdi | 
							⊢ ( 𝜑  →  ( ( 𝑋  −  𝐸 )  =  ( - 𝑆  −  𝐼 )  ↔  𝑋  =  ( ( 𝐸  −  𝑆 )  −  𝐼 ) ) )  | 
						
						
							| 148 | 
							
								138 147
							 | 
							orbi12d | 
							⊢ ( 𝜑  →  ( ( ( 𝑋  −  𝐸 )  =  ( - 𝑆  +  𝐼 )  ∨  ( 𝑋  −  𝐸 )  =  ( - 𝑆  −  𝐼 ) )  ↔  ( 𝑋  =  ( ( 𝐸  −  𝑆 )  +  𝐼 )  ∨  𝑋  =  ( ( 𝐸  −  𝑆 )  −  𝐼 ) ) ) )  | 
						
						
							| 149 | 
							
								37 122
							 | 
							addcld | 
							⊢ ( 𝜑  →  ( 𝑆  +  𝐽 )  ∈  ℂ )  | 
						
						
							| 150 | 
							
								5 34 149
							 | 
							subaddd | 
							⊢ ( 𝜑  →  ( ( 𝑋  −  𝐸 )  =  ( 𝑆  +  𝐽 )  ↔  ( 𝐸  +  ( 𝑆  +  𝐽 ) )  =  𝑋 ) )  | 
						
						
							| 151 | 
							
								34 37 122
							 | 
							addassd | 
							⊢ ( 𝜑  →  ( ( 𝐸  +  𝑆 )  +  𝐽 )  =  ( 𝐸  +  ( 𝑆  +  𝐽 ) ) )  | 
						
						
							| 152 | 
							
								151
							 | 
							eqeq1d | 
							⊢ ( 𝜑  →  ( ( ( 𝐸  +  𝑆 )  +  𝐽 )  =  𝑋  ↔  ( 𝐸  +  ( 𝑆  +  𝐽 ) )  =  𝑋 ) )  | 
						
						
							| 153 | 
							
								150 152
							 | 
							bitr4d | 
							⊢ ( 𝜑  →  ( ( 𝑋  −  𝐸 )  =  ( 𝑆  +  𝐽 )  ↔  ( ( 𝐸  +  𝑆 )  +  𝐽 )  =  𝑋 ) )  | 
						
						
							| 154 | 
							
								
							 | 
							eqcom | 
							⊢ ( ( ( 𝐸  +  𝑆 )  +  𝐽 )  =  𝑋  ↔  𝑋  =  ( ( 𝐸  +  𝑆 )  +  𝐽 ) )  | 
						
						
							| 155 | 
							
								153 154
							 | 
							bitrdi | 
							⊢ ( 𝜑  →  ( ( 𝑋  −  𝐸 )  =  ( 𝑆  +  𝐽 )  ↔  𝑋  =  ( ( 𝐸  +  𝑆 )  +  𝐽 ) ) )  | 
						
						
							| 156 | 
							
								37 122
							 | 
							subcld | 
							⊢ ( 𝜑  →  ( 𝑆  −  𝐽 )  ∈  ℂ )  | 
						
						
							| 157 | 
							
								5 34 156
							 | 
							subaddd | 
							⊢ ( 𝜑  →  ( ( 𝑋  −  𝐸 )  =  ( 𝑆  −  𝐽 )  ↔  ( 𝐸  +  ( 𝑆  −  𝐽 ) )  =  𝑋 ) )  | 
						
						
							| 158 | 
							
								34 37 122
							 | 
							addsubassd | 
							⊢ ( 𝜑  →  ( ( 𝐸  +  𝑆 )  −  𝐽 )  =  ( 𝐸  +  ( 𝑆  −  𝐽 ) ) )  | 
						
						
							| 159 | 
							
								158
							 | 
							eqeq1d | 
							⊢ ( 𝜑  →  ( ( ( 𝐸  +  𝑆 )  −  𝐽 )  =  𝑋  ↔  ( 𝐸  +  ( 𝑆  −  𝐽 ) )  =  𝑋 ) )  | 
						
						
							| 160 | 
							
								157 159
							 | 
							bitr4d | 
							⊢ ( 𝜑  →  ( ( 𝑋  −  𝐸 )  =  ( 𝑆  −  𝐽 )  ↔  ( ( 𝐸  +  𝑆 )  −  𝐽 )  =  𝑋 ) )  | 
						
						
							| 161 | 
							
								
							 | 
							eqcom | 
							⊢ ( ( ( 𝐸  +  𝑆 )  −  𝐽 )  =  𝑋  ↔  𝑋  =  ( ( 𝐸  +  𝑆 )  −  𝐽 ) )  | 
						
						
							| 162 | 
							
								160 161
							 | 
							bitrdi | 
							⊢ ( 𝜑  →  ( ( 𝑋  −  𝐸 )  =  ( 𝑆  −  𝐽 )  ↔  𝑋  =  ( ( 𝐸  +  𝑆 )  −  𝐽 ) ) )  | 
						
						
							| 163 | 
							
								155 162
							 | 
							orbi12d | 
							⊢ ( 𝜑  →  ( ( ( 𝑋  −  𝐸 )  =  ( 𝑆  +  𝐽 )  ∨  ( 𝑋  −  𝐸 )  =  ( 𝑆  −  𝐽 ) )  ↔  ( 𝑋  =  ( ( 𝐸  +  𝑆 )  +  𝐽 )  ∨  𝑋  =  ( ( 𝐸  +  𝑆 )  −  𝐽 ) ) ) )  | 
						
						
							| 164 | 
							
								148 163
							 | 
							orbi12d | 
							⊢ ( 𝜑  →  ( ( ( ( 𝑋  −  𝐸 )  =  ( - 𝑆  +  𝐼 )  ∨  ( 𝑋  −  𝐸 )  =  ( - 𝑆  −  𝐼 ) )  ∨  ( ( 𝑋  −  𝐸 )  =  ( 𝑆  +  𝐽 )  ∨  ( 𝑋  −  𝐸 )  =  ( 𝑆  −  𝐽 ) ) )  ↔  ( ( 𝑋  =  ( ( 𝐸  −  𝑆 )  +  𝐼 )  ∨  𝑋  =  ( ( 𝐸  −  𝑆 )  −  𝐼 ) )  ∨  ( 𝑋  =  ( ( 𝐸  +  𝑆 )  +  𝐽 )  ∨  𝑋  =  ( ( 𝐸  +  𝑆 )  −  𝐽 ) ) ) ) )  | 
						
						
							| 165 | 
							
								29 127 164
							 | 
							3bitrd | 
							⊢ ( 𝜑  →  ( ( ( ( 𝑋 ↑ 4 )  +  ( 𝐴  ·  ( 𝑋 ↑ 3 ) ) )  +  ( ( 𝐵  ·  ( 𝑋 ↑ 2 ) )  +  ( ( 𝐶  ·  𝑋 )  +  𝐷 ) ) )  =  0  ↔  ( ( 𝑋  =  ( ( 𝐸  −  𝑆 )  +  𝐼 )  ∨  𝑋  =  ( ( 𝐸  −  𝑆 )  −  𝐼 ) )  ∨  ( 𝑋  =  ( ( 𝐸  +  𝑆 )  +  𝐽 )  ∨  𝑋  =  ( ( 𝐸  +  𝑆 )  −  𝐽 ) ) ) ) )  |