| Step |
Hyp |
Ref |
Expression |
| 1 |
|
quart.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 2 |
|
quart.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 3 |
|
quart.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 4 |
|
quart.d |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 5 |
|
quart.x |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 6 |
|
quart.e |
⊢ ( 𝜑 → 𝐸 = - ( 𝐴 / 4 ) ) |
| 7 |
|
quart.p |
⊢ ( 𝜑 → 𝑃 = ( 𝐵 − ( ( 3 / 8 ) · ( 𝐴 ↑ 2 ) ) ) ) |
| 8 |
|
quart.q |
⊢ ( 𝜑 → 𝑄 = ( ( 𝐶 − ( ( 𝐴 · 𝐵 ) / 2 ) ) + ( ( 𝐴 ↑ 3 ) / 8 ) ) ) |
| 9 |
|
quart.r |
⊢ ( 𝜑 → 𝑅 = ( ( 𝐷 − ( ( 𝐶 · 𝐴 ) / 4 ) ) + ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) − ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) ) ) |
| 10 |
|
quart.u |
⊢ ( 𝜑 → 𝑈 = ( ( 𝑃 ↑ 2 ) + ( ; 1 2 · 𝑅 ) ) ) |
| 11 |
|
quart.v |
⊢ ( 𝜑 → 𝑉 = ( ( - ( 2 · ( 𝑃 ↑ 3 ) ) − ( ; 2 7 · ( 𝑄 ↑ 2 ) ) ) + ( ; 7 2 · ( 𝑃 · 𝑅 ) ) ) ) |
| 12 |
|
quart.w |
⊢ ( 𝜑 → 𝑊 = ( √ ‘ ( ( 𝑉 ↑ 2 ) − ( 4 · ( 𝑈 ↑ 3 ) ) ) ) ) |
| 13 |
|
quart.s |
⊢ ( 𝜑 → 𝑆 = ( ( √ ‘ 𝑀 ) / 2 ) ) |
| 14 |
|
quart.m |
⊢ ( 𝜑 → 𝑀 = - ( ( ( ( 2 · 𝑃 ) + 𝑇 ) + ( 𝑈 / 𝑇 ) ) / 3 ) ) |
| 15 |
|
quart.t |
⊢ ( 𝜑 → 𝑇 = ( ( ( 𝑉 + 𝑊 ) / 2 ) ↑𝑐 ( 1 / 3 ) ) ) |
| 16 |
|
quart.t0 |
⊢ ( 𝜑 → 𝑇 ≠ 0 ) |
| 17 |
|
quart.m0 |
⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
| 18 |
|
quart.i |
⊢ ( 𝜑 → 𝐼 = ( √ ‘ ( ( - ( 𝑆 ↑ 2 ) − ( 𝑃 / 2 ) ) + ( ( 𝑄 / 4 ) / 𝑆 ) ) ) ) |
| 19 |
|
quart.j |
⊢ ( 𝜑 → 𝐽 = ( √ ‘ ( ( - ( 𝑆 ↑ 2 ) − ( 𝑃 / 2 ) ) − ( ( 𝑄 / 4 ) / 𝑆 ) ) ) ) |
| 20 |
6
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 − 𝐸 ) = ( 𝑋 − - ( 𝐴 / 4 ) ) ) |
| 21 |
|
4cn |
⊢ 4 ∈ ℂ |
| 22 |
21
|
a1i |
⊢ ( 𝜑 → 4 ∈ ℂ ) |
| 23 |
|
4ne0 |
⊢ 4 ≠ 0 |
| 24 |
23
|
a1i |
⊢ ( 𝜑 → 4 ≠ 0 ) |
| 25 |
1 22 24
|
divcld |
⊢ ( 𝜑 → ( 𝐴 / 4 ) ∈ ℂ ) |
| 26 |
5 25
|
subnegd |
⊢ ( 𝜑 → ( 𝑋 − - ( 𝐴 / 4 ) ) = ( 𝑋 + ( 𝐴 / 4 ) ) ) |
| 27 |
20 26
|
eqtrd |
⊢ ( 𝜑 → ( 𝑋 − 𝐸 ) = ( 𝑋 + ( 𝐴 / 4 ) ) ) |
| 28 |
1 2 3 4 7 8 9 5 27
|
quart1 |
⊢ ( 𝜑 → ( ( ( 𝑋 ↑ 4 ) + ( 𝐴 · ( 𝑋 ↑ 3 ) ) ) + ( ( 𝐵 · ( 𝑋 ↑ 2 ) ) + ( ( 𝐶 · 𝑋 ) + 𝐷 ) ) ) = ( ( ( ( 𝑋 − 𝐸 ) ↑ 4 ) + ( 𝑃 · ( ( 𝑋 − 𝐸 ) ↑ 2 ) ) ) + ( ( 𝑄 · ( 𝑋 − 𝐸 ) ) + 𝑅 ) ) ) |
| 29 |
28
|
eqeq1d |
⊢ ( 𝜑 → ( ( ( ( 𝑋 ↑ 4 ) + ( 𝐴 · ( 𝑋 ↑ 3 ) ) ) + ( ( 𝐵 · ( 𝑋 ↑ 2 ) ) + ( ( 𝐶 · 𝑋 ) + 𝐷 ) ) ) = 0 ↔ ( ( ( ( 𝑋 − 𝐸 ) ↑ 4 ) + ( 𝑃 · ( ( 𝑋 − 𝐸 ) ↑ 2 ) ) ) + ( ( 𝑄 · ( 𝑋 − 𝐸 ) ) + 𝑅 ) ) = 0 ) ) |
| 30 |
1 2 3 4 7 8 9
|
quart1cl |
⊢ ( 𝜑 → ( 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ ) ) |
| 31 |
30
|
simp1d |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 32 |
30
|
simp2d |
⊢ ( 𝜑 → 𝑄 ∈ ℂ ) |
| 33 |
25
|
negcld |
⊢ ( 𝜑 → - ( 𝐴 / 4 ) ∈ ℂ ) |
| 34 |
6 33
|
eqeltrd |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
| 35 |
5 34
|
subcld |
⊢ ( 𝜑 → ( 𝑋 − 𝐸 ) ∈ ℂ ) |
| 36 |
1 2 3 4 1 6 7 8 9 10 11 12 13 14 15 16
|
quartlem3 |
⊢ ( 𝜑 → ( 𝑆 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑇 ∈ ℂ ) ) |
| 37 |
36
|
simp1d |
⊢ ( 𝜑 → 𝑆 ∈ ℂ ) |
| 38 |
13
|
oveq2d |
⊢ ( 𝜑 → ( 2 · 𝑆 ) = ( 2 · ( ( √ ‘ 𝑀 ) / 2 ) ) ) |
| 39 |
36
|
simp2d |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 40 |
39
|
sqrtcld |
⊢ ( 𝜑 → ( √ ‘ 𝑀 ) ∈ ℂ ) |
| 41 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 42 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 43 |
42
|
a1i |
⊢ ( 𝜑 → 2 ≠ 0 ) |
| 44 |
40 41 43
|
divcan2d |
⊢ ( 𝜑 → ( 2 · ( ( √ ‘ 𝑀 ) / 2 ) ) = ( √ ‘ 𝑀 ) ) |
| 45 |
38 44
|
eqtrd |
⊢ ( 𝜑 → ( 2 · 𝑆 ) = ( √ ‘ 𝑀 ) ) |
| 46 |
45
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 · 𝑆 ) ↑ 2 ) = ( ( √ ‘ 𝑀 ) ↑ 2 ) ) |
| 47 |
39
|
sqsqrtd |
⊢ ( 𝜑 → ( ( √ ‘ 𝑀 ) ↑ 2 ) = 𝑀 ) |
| 48 |
46 47
|
eqtr2d |
⊢ ( 𝜑 → 𝑀 = ( ( 2 · 𝑆 ) ↑ 2 ) ) |
| 49 |
1 2 3 4 1 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
quartlem4 |
⊢ ( 𝜑 → ( 𝑆 ≠ 0 ∧ 𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ ) ) |
| 50 |
49
|
simp2d |
⊢ ( 𝜑 → 𝐼 ∈ ℂ ) |
| 51 |
18
|
oveq1d |
⊢ ( 𝜑 → ( 𝐼 ↑ 2 ) = ( ( √ ‘ ( ( - ( 𝑆 ↑ 2 ) − ( 𝑃 / 2 ) ) + ( ( 𝑄 / 4 ) / 𝑆 ) ) ) ↑ 2 ) ) |
| 52 |
37
|
sqcld |
⊢ ( 𝜑 → ( 𝑆 ↑ 2 ) ∈ ℂ ) |
| 53 |
52
|
negcld |
⊢ ( 𝜑 → - ( 𝑆 ↑ 2 ) ∈ ℂ ) |
| 54 |
31
|
halfcld |
⊢ ( 𝜑 → ( 𝑃 / 2 ) ∈ ℂ ) |
| 55 |
53 54
|
subcld |
⊢ ( 𝜑 → ( - ( 𝑆 ↑ 2 ) − ( 𝑃 / 2 ) ) ∈ ℂ ) |
| 56 |
32 22 24
|
divcld |
⊢ ( 𝜑 → ( 𝑄 / 4 ) ∈ ℂ ) |
| 57 |
49
|
simp1d |
⊢ ( 𝜑 → 𝑆 ≠ 0 ) |
| 58 |
56 37 57
|
divcld |
⊢ ( 𝜑 → ( ( 𝑄 / 4 ) / 𝑆 ) ∈ ℂ ) |
| 59 |
55 58
|
addcld |
⊢ ( 𝜑 → ( ( - ( 𝑆 ↑ 2 ) − ( 𝑃 / 2 ) ) + ( ( 𝑄 / 4 ) / 𝑆 ) ) ∈ ℂ ) |
| 60 |
59
|
sqsqrtd |
⊢ ( 𝜑 → ( ( √ ‘ ( ( - ( 𝑆 ↑ 2 ) − ( 𝑃 / 2 ) ) + ( ( 𝑄 / 4 ) / 𝑆 ) ) ) ↑ 2 ) = ( ( - ( 𝑆 ↑ 2 ) − ( 𝑃 / 2 ) ) + ( ( 𝑄 / 4 ) / 𝑆 ) ) ) |
| 61 |
51 60
|
eqtrd |
⊢ ( 𝜑 → ( 𝐼 ↑ 2 ) = ( ( - ( 𝑆 ↑ 2 ) − ( 𝑃 / 2 ) ) + ( ( 𝑄 / 4 ) / 𝑆 ) ) ) |
| 62 |
30
|
simp3d |
⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
| 63 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 64 |
|
3z |
⊢ 3 ∈ ℤ |
| 65 |
|
1exp |
⊢ ( 3 ∈ ℤ → ( 1 ↑ 3 ) = 1 ) |
| 66 |
64 65
|
mp1i |
⊢ ( 𝜑 → ( 1 ↑ 3 ) = 1 ) |
| 67 |
36
|
simp3d |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 68 |
67
|
mullidd |
⊢ ( 𝜑 → ( 1 · 𝑇 ) = 𝑇 ) |
| 69 |
68
|
oveq2d |
⊢ ( 𝜑 → ( ( 2 · 𝑃 ) + ( 1 · 𝑇 ) ) = ( ( 2 · 𝑃 ) + 𝑇 ) ) |
| 70 |
68
|
oveq2d |
⊢ ( 𝜑 → ( 𝑈 / ( 1 · 𝑇 ) ) = ( 𝑈 / 𝑇 ) ) |
| 71 |
69 70
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑃 ) + ( 1 · 𝑇 ) ) + ( 𝑈 / ( 1 · 𝑇 ) ) ) = ( ( ( 2 · 𝑃 ) + 𝑇 ) + ( 𝑈 / 𝑇 ) ) ) |
| 72 |
71
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑃 ) + ( 1 · 𝑇 ) ) + ( 𝑈 / ( 1 · 𝑇 ) ) ) / 3 ) = ( ( ( ( 2 · 𝑃 ) + 𝑇 ) + ( 𝑈 / 𝑇 ) ) / 3 ) ) |
| 73 |
72
|
negeqd |
⊢ ( 𝜑 → - ( ( ( ( 2 · 𝑃 ) + ( 1 · 𝑇 ) ) + ( 𝑈 / ( 1 · 𝑇 ) ) ) / 3 ) = - ( ( ( ( 2 · 𝑃 ) + 𝑇 ) + ( 𝑈 / 𝑇 ) ) / 3 ) ) |
| 74 |
14 73
|
eqtr4d |
⊢ ( 𝜑 → 𝑀 = - ( ( ( ( 2 · 𝑃 ) + ( 1 · 𝑇 ) ) + ( 𝑈 / ( 1 · 𝑇 ) ) ) / 3 ) ) |
| 75 |
|
oveq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 ↑ 3 ) = ( 1 ↑ 3 ) ) |
| 76 |
75
|
eqeq1d |
⊢ ( 𝑥 = 1 → ( ( 𝑥 ↑ 3 ) = 1 ↔ ( 1 ↑ 3 ) = 1 ) ) |
| 77 |
|
oveq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 · 𝑇 ) = ( 1 · 𝑇 ) ) |
| 78 |
77
|
oveq2d |
⊢ ( 𝑥 = 1 → ( ( 2 · 𝑃 ) + ( 𝑥 · 𝑇 ) ) = ( ( 2 · 𝑃 ) + ( 1 · 𝑇 ) ) ) |
| 79 |
77
|
oveq2d |
⊢ ( 𝑥 = 1 → ( 𝑈 / ( 𝑥 · 𝑇 ) ) = ( 𝑈 / ( 1 · 𝑇 ) ) ) |
| 80 |
78 79
|
oveq12d |
⊢ ( 𝑥 = 1 → ( ( ( 2 · 𝑃 ) + ( 𝑥 · 𝑇 ) ) + ( 𝑈 / ( 𝑥 · 𝑇 ) ) ) = ( ( ( 2 · 𝑃 ) + ( 1 · 𝑇 ) ) + ( 𝑈 / ( 1 · 𝑇 ) ) ) ) |
| 81 |
80
|
oveq1d |
⊢ ( 𝑥 = 1 → ( ( ( ( 2 · 𝑃 ) + ( 𝑥 · 𝑇 ) ) + ( 𝑈 / ( 𝑥 · 𝑇 ) ) ) / 3 ) = ( ( ( ( 2 · 𝑃 ) + ( 1 · 𝑇 ) ) + ( 𝑈 / ( 1 · 𝑇 ) ) ) / 3 ) ) |
| 82 |
81
|
negeqd |
⊢ ( 𝑥 = 1 → - ( ( ( ( 2 · 𝑃 ) + ( 𝑥 · 𝑇 ) ) + ( 𝑈 / ( 𝑥 · 𝑇 ) ) ) / 3 ) = - ( ( ( ( 2 · 𝑃 ) + ( 1 · 𝑇 ) ) + ( 𝑈 / ( 1 · 𝑇 ) ) ) / 3 ) ) |
| 83 |
82
|
eqeq2d |
⊢ ( 𝑥 = 1 → ( 𝑀 = - ( ( ( ( 2 · 𝑃 ) + ( 𝑥 · 𝑇 ) ) + ( 𝑈 / ( 𝑥 · 𝑇 ) ) ) / 3 ) ↔ 𝑀 = - ( ( ( ( 2 · 𝑃 ) + ( 1 · 𝑇 ) ) + ( 𝑈 / ( 1 · 𝑇 ) ) ) / 3 ) ) ) |
| 84 |
76 83
|
anbi12d |
⊢ ( 𝑥 = 1 → ( ( ( 𝑥 ↑ 3 ) = 1 ∧ 𝑀 = - ( ( ( ( 2 · 𝑃 ) + ( 𝑥 · 𝑇 ) ) + ( 𝑈 / ( 𝑥 · 𝑇 ) ) ) / 3 ) ) ↔ ( ( 1 ↑ 3 ) = 1 ∧ 𝑀 = - ( ( ( ( 2 · 𝑃 ) + ( 1 · 𝑇 ) ) + ( 𝑈 / ( 1 · 𝑇 ) ) ) / 3 ) ) ) ) |
| 85 |
84
|
rspcev |
⊢ ( ( 1 ∈ ℂ ∧ ( ( 1 ↑ 3 ) = 1 ∧ 𝑀 = - ( ( ( ( 2 · 𝑃 ) + ( 1 · 𝑇 ) ) + ( 𝑈 / ( 1 · 𝑇 ) ) ) / 3 ) ) ) → ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 3 ) = 1 ∧ 𝑀 = - ( ( ( ( 2 · 𝑃 ) + ( 𝑥 · 𝑇 ) ) + ( 𝑈 / ( 𝑥 · 𝑇 ) ) ) / 3 ) ) ) |
| 86 |
63 66 74 85
|
syl12anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 3 ) = 1 ∧ 𝑀 = - ( ( ( ( 2 · 𝑃 ) + ( 𝑥 · 𝑇 ) ) + ( 𝑈 / ( 𝑥 · 𝑇 ) ) ) / 3 ) ) ) |
| 87 |
|
2cn |
⊢ 2 ∈ ℂ |
| 88 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ 𝑃 ∈ ℂ ) → ( 2 · 𝑃 ) ∈ ℂ ) |
| 89 |
87 31 88
|
sylancr |
⊢ ( 𝜑 → ( 2 · 𝑃 ) ∈ ℂ ) |
| 90 |
31
|
sqcld |
⊢ ( 𝜑 → ( 𝑃 ↑ 2 ) ∈ ℂ ) |
| 91 |
|
mulcl |
⊢ ( ( 4 ∈ ℂ ∧ 𝑅 ∈ ℂ ) → ( 4 · 𝑅 ) ∈ ℂ ) |
| 92 |
21 62 91
|
sylancr |
⊢ ( 𝜑 → ( 4 · 𝑅 ) ∈ ℂ ) |
| 93 |
90 92
|
subcld |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 2 ) − ( 4 · 𝑅 ) ) ∈ ℂ ) |
| 94 |
32
|
sqcld |
⊢ ( 𝜑 → ( 𝑄 ↑ 2 ) ∈ ℂ ) |
| 95 |
94
|
negcld |
⊢ ( 𝜑 → - ( 𝑄 ↑ 2 ) ∈ ℂ ) |
| 96 |
15
|
oveq1d |
⊢ ( 𝜑 → ( 𝑇 ↑ 3 ) = ( ( ( ( 𝑉 + 𝑊 ) / 2 ) ↑𝑐 ( 1 / 3 ) ) ↑ 3 ) ) |
| 97 |
1 2 3 4 1 6 7 8 9 10 11 12
|
quartlem2 |
⊢ ( 𝜑 → ( 𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ ) ) |
| 98 |
97
|
simp2d |
⊢ ( 𝜑 → 𝑉 ∈ ℂ ) |
| 99 |
97
|
simp3d |
⊢ ( 𝜑 → 𝑊 ∈ ℂ ) |
| 100 |
98 99
|
addcld |
⊢ ( 𝜑 → ( 𝑉 + 𝑊 ) ∈ ℂ ) |
| 101 |
100
|
halfcld |
⊢ ( 𝜑 → ( ( 𝑉 + 𝑊 ) / 2 ) ∈ ℂ ) |
| 102 |
|
3nn |
⊢ 3 ∈ ℕ |
| 103 |
|
cxproot |
⊢ ( ( ( ( 𝑉 + 𝑊 ) / 2 ) ∈ ℂ ∧ 3 ∈ ℕ ) → ( ( ( ( 𝑉 + 𝑊 ) / 2 ) ↑𝑐 ( 1 / 3 ) ) ↑ 3 ) = ( ( 𝑉 + 𝑊 ) / 2 ) ) |
| 104 |
101 102 103
|
sylancl |
⊢ ( 𝜑 → ( ( ( ( 𝑉 + 𝑊 ) / 2 ) ↑𝑐 ( 1 / 3 ) ) ↑ 3 ) = ( ( 𝑉 + 𝑊 ) / 2 ) ) |
| 105 |
96 104
|
eqtrd |
⊢ ( 𝜑 → ( 𝑇 ↑ 3 ) = ( ( 𝑉 + 𝑊 ) / 2 ) ) |
| 106 |
12
|
oveq1d |
⊢ ( 𝜑 → ( 𝑊 ↑ 2 ) = ( ( √ ‘ ( ( 𝑉 ↑ 2 ) − ( 4 · ( 𝑈 ↑ 3 ) ) ) ) ↑ 2 ) ) |
| 107 |
98
|
sqcld |
⊢ ( 𝜑 → ( 𝑉 ↑ 2 ) ∈ ℂ ) |
| 108 |
97
|
simp1d |
⊢ ( 𝜑 → 𝑈 ∈ ℂ ) |
| 109 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 110 |
|
expcl |
⊢ ( ( 𝑈 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝑈 ↑ 3 ) ∈ ℂ ) |
| 111 |
108 109 110
|
sylancl |
⊢ ( 𝜑 → ( 𝑈 ↑ 3 ) ∈ ℂ ) |
| 112 |
|
mulcl |
⊢ ( ( 4 ∈ ℂ ∧ ( 𝑈 ↑ 3 ) ∈ ℂ ) → ( 4 · ( 𝑈 ↑ 3 ) ) ∈ ℂ ) |
| 113 |
21 111 112
|
sylancr |
⊢ ( 𝜑 → ( 4 · ( 𝑈 ↑ 3 ) ) ∈ ℂ ) |
| 114 |
107 113
|
subcld |
⊢ ( 𝜑 → ( ( 𝑉 ↑ 2 ) − ( 4 · ( 𝑈 ↑ 3 ) ) ) ∈ ℂ ) |
| 115 |
114
|
sqsqrtd |
⊢ ( 𝜑 → ( ( √ ‘ ( ( 𝑉 ↑ 2 ) − ( 4 · ( 𝑈 ↑ 3 ) ) ) ) ↑ 2 ) = ( ( 𝑉 ↑ 2 ) − ( 4 · ( 𝑈 ↑ 3 ) ) ) ) |
| 116 |
106 115
|
eqtrd |
⊢ ( 𝜑 → ( 𝑊 ↑ 2 ) = ( ( 𝑉 ↑ 2 ) − ( 4 · ( 𝑈 ↑ 3 ) ) ) ) |
| 117 |
31 32 62 10 11
|
quartlem1 |
⊢ ( 𝜑 → ( 𝑈 = ( ( ( 2 · 𝑃 ) ↑ 2 ) − ( 3 · ( ( 𝑃 ↑ 2 ) − ( 4 · 𝑅 ) ) ) ) ∧ 𝑉 = ( ( ( 2 · ( ( 2 · 𝑃 ) ↑ 3 ) ) − ( 9 · ( ( 2 · 𝑃 ) · ( ( 𝑃 ↑ 2 ) − ( 4 · 𝑅 ) ) ) ) ) + ( ; 2 7 · - ( 𝑄 ↑ 2 ) ) ) ) ) |
| 118 |
117
|
simpld |
⊢ ( 𝜑 → 𝑈 = ( ( ( 2 · 𝑃 ) ↑ 2 ) − ( 3 · ( ( 𝑃 ↑ 2 ) − ( 4 · 𝑅 ) ) ) ) ) |
| 119 |
117
|
simprd |
⊢ ( 𝜑 → 𝑉 = ( ( ( 2 · ( ( 2 · 𝑃 ) ↑ 3 ) ) − ( 9 · ( ( 2 · 𝑃 ) · ( ( 𝑃 ↑ 2 ) − ( 4 · 𝑅 ) ) ) ) ) + ( ; 2 7 · - ( 𝑄 ↑ 2 ) ) ) ) |
| 120 |
89 93 95 39 67 105 99 116 118 119 16
|
mcubic |
⊢ ( 𝜑 → ( ( ( ( 𝑀 ↑ 3 ) + ( ( 2 · 𝑃 ) · ( 𝑀 ↑ 2 ) ) ) + ( ( ( ( 𝑃 ↑ 2 ) − ( 4 · 𝑅 ) ) · 𝑀 ) + - ( 𝑄 ↑ 2 ) ) ) = 0 ↔ ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 3 ) = 1 ∧ 𝑀 = - ( ( ( ( 2 · 𝑃 ) + ( 𝑥 · 𝑇 ) ) + ( 𝑈 / ( 𝑥 · 𝑇 ) ) ) / 3 ) ) ) ) |
| 121 |
86 120
|
mpbird |
⊢ ( 𝜑 → ( ( ( 𝑀 ↑ 3 ) + ( ( 2 · 𝑃 ) · ( 𝑀 ↑ 2 ) ) ) + ( ( ( ( 𝑃 ↑ 2 ) − ( 4 · 𝑅 ) ) · 𝑀 ) + - ( 𝑄 ↑ 2 ) ) ) = 0 ) |
| 122 |
49
|
simp3d |
⊢ ( 𝜑 → 𝐽 ∈ ℂ ) |
| 123 |
19
|
oveq1d |
⊢ ( 𝜑 → ( 𝐽 ↑ 2 ) = ( ( √ ‘ ( ( - ( 𝑆 ↑ 2 ) − ( 𝑃 / 2 ) ) − ( ( 𝑄 / 4 ) / 𝑆 ) ) ) ↑ 2 ) ) |
| 124 |
55 58
|
subcld |
⊢ ( 𝜑 → ( ( - ( 𝑆 ↑ 2 ) − ( 𝑃 / 2 ) ) − ( ( 𝑄 / 4 ) / 𝑆 ) ) ∈ ℂ ) |
| 125 |
124
|
sqsqrtd |
⊢ ( 𝜑 → ( ( √ ‘ ( ( - ( 𝑆 ↑ 2 ) − ( 𝑃 / 2 ) ) − ( ( 𝑄 / 4 ) / 𝑆 ) ) ) ↑ 2 ) = ( ( - ( 𝑆 ↑ 2 ) − ( 𝑃 / 2 ) ) − ( ( 𝑄 / 4 ) / 𝑆 ) ) ) |
| 126 |
123 125
|
eqtrd |
⊢ ( 𝜑 → ( 𝐽 ↑ 2 ) = ( ( - ( 𝑆 ↑ 2 ) − ( 𝑃 / 2 ) ) − ( ( 𝑄 / 4 ) / 𝑆 ) ) ) |
| 127 |
31 32 35 37 48 17 50 61 62 121 122 126
|
dquart |
⊢ ( 𝜑 → ( ( ( ( ( 𝑋 − 𝐸 ) ↑ 4 ) + ( 𝑃 · ( ( 𝑋 − 𝐸 ) ↑ 2 ) ) ) + ( ( 𝑄 · ( 𝑋 − 𝐸 ) ) + 𝑅 ) ) = 0 ↔ ( ( ( 𝑋 − 𝐸 ) = ( - 𝑆 + 𝐼 ) ∨ ( 𝑋 − 𝐸 ) = ( - 𝑆 − 𝐼 ) ) ∨ ( ( 𝑋 − 𝐸 ) = ( 𝑆 + 𝐽 ) ∨ ( 𝑋 − 𝐸 ) = ( 𝑆 − 𝐽 ) ) ) ) ) |
| 128 |
37
|
negcld |
⊢ ( 𝜑 → - 𝑆 ∈ ℂ ) |
| 129 |
128 50
|
addcld |
⊢ ( 𝜑 → ( - 𝑆 + 𝐼 ) ∈ ℂ ) |
| 130 |
5 34 129
|
subaddd |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐸 ) = ( - 𝑆 + 𝐼 ) ↔ ( 𝐸 + ( - 𝑆 + 𝐼 ) ) = 𝑋 ) ) |
| 131 |
34 37
|
negsubd |
⊢ ( 𝜑 → ( 𝐸 + - 𝑆 ) = ( 𝐸 − 𝑆 ) ) |
| 132 |
131
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐸 + - 𝑆 ) + 𝐼 ) = ( ( 𝐸 − 𝑆 ) + 𝐼 ) ) |
| 133 |
34 128 50
|
addassd |
⊢ ( 𝜑 → ( ( 𝐸 + - 𝑆 ) + 𝐼 ) = ( 𝐸 + ( - 𝑆 + 𝐼 ) ) ) |
| 134 |
132 133
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝐸 − 𝑆 ) + 𝐼 ) = ( 𝐸 + ( - 𝑆 + 𝐼 ) ) ) |
| 135 |
134
|
eqeq1d |
⊢ ( 𝜑 → ( ( ( 𝐸 − 𝑆 ) + 𝐼 ) = 𝑋 ↔ ( 𝐸 + ( - 𝑆 + 𝐼 ) ) = 𝑋 ) ) |
| 136 |
130 135
|
bitr4d |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐸 ) = ( - 𝑆 + 𝐼 ) ↔ ( ( 𝐸 − 𝑆 ) + 𝐼 ) = 𝑋 ) ) |
| 137 |
|
eqcom |
⊢ ( ( ( 𝐸 − 𝑆 ) + 𝐼 ) = 𝑋 ↔ 𝑋 = ( ( 𝐸 − 𝑆 ) + 𝐼 ) ) |
| 138 |
136 137
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐸 ) = ( - 𝑆 + 𝐼 ) ↔ 𝑋 = ( ( 𝐸 − 𝑆 ) + 𝐼 ) ) ) |
| 139 |
128 50
|
subcld |
⊢ ( 𝜑 → ( - 𝑆 − 𝐼 ) ∈ ℂ ) |
| 140 |
5 34 139
|
subaddd |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐸 ) = ( - 𝑆 − 𝐼 ) ↔ ( 𝐸 + ( - 𝑆 − 𝐼 ) ) = 𝑋 ) ) |
| 141 |
131
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐸 + - 𝑆 ) − 𝐼 ) = ( ( 𝐸 − 𝑆 ) − 𝐼 ) ) |
| 142 |
34 128 50
|
addsubassd |
⊢ ( 𝜑 → ( ( 𝐸 + - 𝑆 ) − 𝐼 ) = ( 𝐸 + ( - 𝑆 − 𝐼 ) ) ) |
| 143 |
141 142
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝐸 − 𝑆 ) − 𝐼 ) = ( 𝐸 + ( - 𝑆 − 𝐼 ) ) ) |
| 144 |
143
|
eqeq1d |
⊢ ( 𝜑 → ( ( ( 𝐸 − 𝑆 ) − 𝐼 ) = 𝑋 ↔ ( 𝐸 + ( - 𝑆 − 𝐼 ) ) = 𝑋 ) ) |
| 145 |
140 144
|
bitr4d |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐸 ) = ( - 𝑆 − 𝐼 ) ↔ ( ( 𝐸 − 𝑆 ) − 𝐼 ) = 𝑋 ) ) |
| 146 |
|
eqcom |
⊢ ( ( ( 𝐸 − 𝑆 ) − 𝐼 ) = 𝑋 ↔ 𝑋 = ( ( 𝐸 − 𝑆 ) − 𝐼 ) ) |
| 147 |
145 146
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐸 ) = ( - 𝑆 − 𝐼 ) ↔ 𝑋 = ( ( 𝐸 − 𝑆 ) − 𝐼 ) ) ) |
| 148 |
138 147
|
orbi12d |
⊢ ( 𝜑 → ( ( ( 𝑋 − 𝐸 ) = ( - 𝑆 + 𝐼 ) ∨ ( 𝑋 − 𝐸 ) = ( - 𝑆 − 𝐼 ) ) ↔ ( 𝑋 = ( ( 𝐸 − 𝑆 ) + 𝐼 ) ∨ 𝑋 = ( ( 𝐸 − 𝑆 ) − 𝐼 ) ) ) ) |
| 149 |
37 122
|
addcld |
⊢ ( 𝜑 → ( 𝑆 + 𝐽 ) ∈ ℂ ) |
| 150 |
5 34 149
|
subaddd |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐸 ) = ( 𝑆 + 𝐽 ) ↔ ( 𝐸 + ( 𝑆 + 𝐽 ) ) = 𝑋 ) ) |
| 151 |
34 37 122
|
addassd |
⊢ ( 𝜑 → ( ( 𝐸 + 𝑆 ) + 𝐽 ) = ( 𝐸 + ( 𝑆 + 𝐽 ) ) ) |
| 152 |
151
|
eqeq1d |
⊢ ( 𝜑 → ( ( ( 𝐸 + 𝑆 ) + 𝐽 ) = 𝑋 ↔ ( 𝐸 + ( 𝑆 + 𝐽 ) ) = 𝑋 ) ) |
| 153 |
150 152
|
bitr4d |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐸 ) = ( 𝑆 + 𝐽 ) ↔ ( ( 𝐸 + 𝑆 ) + 𝐽 ) = 𝑋 ) ) |
| 154 |
|
eqcom |
⊢ ( ( ( 𝐸 + 𝑆 ) + 𝐽 ) = 𝑋 ↔ 𝑋 = ( ( 𝐸 + 𝑆 ) + 𝐽 ) ) |
| 155 |
153 154
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐸 ) = ( 𝑆 + 𝐽 ) ↔ 𝑋 = ( ( 𝐸 + 𝑆 ) + 𝐽 ) ) ) |
| 156 |
37 122
|
subcld |
⊢ ( 𝜑 → ( 𝑆 − 𝐽 ) ∈ ℂ ) |
| 157 |
5 34 156
|
subaddd |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐸 ) = ( 𝑆 − 𝐽 ) ↔ ( 𝐸 + ( 𝑆 − 𝐽 ) ) = 𝑋 ) ) |
| 158 |
34 37 122
|
addsubassd |
⊢ ( 𝜑 → ( ( 𝐸 + 𝑆 ) − 𝐽 ) = ( 𝐸 + ( 𝑆 − 𝐽 ) ) ) |
| 159 |
158
|
eqeq1d |
⊢ ( 𝜑 → ( ( ( 𝐸 + 𝑆 ) − 𝐽 ) = 𝑋 ↔ ( 𝐸 + ( 𝑆 − 𝐽 ) ) = 𝑋 ) ) |
| 160 |
157 159
|
bitr4d |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐸 ) = ( 𝑆 − 𝐽 ) ↔ ( ( 𝐸 + 𝑆 ) − 𝐽 ) = 𝑋 ) ) |
| 161 |
|
eqcom |
⊢ ( ( ( 𝐸 + 𝑆 ) − 𝐽 ) = 𝑋 ↔ 𝑋 = ( ( 𝐸 + 𝑆 ) − 𝐽 ) ) |
| 162 |
160 161
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐸 ) = ( 𝑆 − 𝐽 ) ↔ 𝑋 = ( ( 𝐸 + 𝑆 ) − 𝐽 ) ) ) |
| 163 |
155 162
|
orbi12d |
⊢ ( 𝜑 → ( ( ( 𝑋 − 𝐸 ) = ( 𝑆 + 𝐽 ) ∨ ( 𝑋 − 𝐸 ) = ( 𝑆 − 𝐽 ) ) ↔ ( 𝑋 = ( ( 𝐸 + 𝑆 ) + 𝐽 ) ∨ 𝑋 = ( ( 𝐸 + 𝑆 ) − 𝐽 ) ) ) ) |
| 164 |
148 163
|
orbi12d |
⊢ ( 𝜑 → ( ( ( ( 𝑋 − 𝐸 ) = ( - 𝑆 + 𝐼 ) ∨ ( 𝑋 − 𝐸 ) = ( - 𝑆 − 𝐼 ) ) ∨ ( ( 𝑋 − 𝐸 ) = ( 𝑆 + 𝐽 ) ∨ ( 𝑋 − 𝐸 ) = ( 𝑆 − 𝐽 ) ) ) ↔ ( ( 𝑋 = ( ( 𝐸 − 𝑆 ) + 𝐼 ) ∨ 𝑋 = ( ( 𝐸 − 𝑆 ) − 𝐼 ) ) ∨ ( 𝑋 = ( ( 𝐸 + 𝑆 ) + 𝐽 ) ∨ 𝑋 = ( ( 𝐸 + 𝑆 ) − 𝐽 ) ) ) ) ) |
| 165 |
29 127 164
|
3bitrd |
⊢ ( 𝜑 → ( ( ( ( 𝑋 ↑ 4 ) + ( 𝐴 · ( 𝑋 ↑ 3 ) ) ) + ( ( 𝐵 · ( 𝑋 ↑ 2 ) ) + ( ( 𝐶 · 𝑋 ) + 𝐷 ) ) ) = 0 ↔ ( ( 𝑋 = ( ( 𝐸 − 𝑆 ) + 𝐼 ) ∨ 𝑋 = ( ( 𝐸 − 𝑆 ) − 𝐼 ) ) ∨ ( 𝑋 = ( ( 𝐸 + 𝑆 ) + 𝐽 ) ∨ 𝑋 = ( ( 𝐸 + 𝑆 ) − 𝐽 ) ) ) ) ) |