| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							quart1.a | 
							⊢ ( 𝜑  →  𝐴  ∈  ℂ )  | 
						
						
							| 2 | 
							
								
							 | 
							quart1.b | 
							⊢ ( 𝜑  →  𝐵  ∈  ℂ )  | 
						
						
							| 3 | 
							
								
							 | 
							quart1.c | 
							⊢ ( 𝜑  →  𝐶  ∈  ℂ )  | 
						
						
							| 4 | 
							
								
							 | 
							quart1.d | 
							⊢ ( 𝜑  →  𝐷  ∈  ℂ )  | 
						
						
							| 5 | 
							
								
							 | 
							quart1.p | 
							⊢ ( 𝜑  →  𝑃  =  ( 𝐵  −  ( ( 3  /  8 )  ·  ( 𝐴 ↑ 2 ) ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							quart1.q | 
							⊢ ( 𝜑  →  𝑄  =  ( ( 𝐶  −  ( ( 𝐴  ·  𝐵 )  /  2 ) )  +  ( ( 𝐴 ↑ 3 )  /  8 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							quart1.r | 
							⊢ ( 𝜑  →  𝑅  =  ( ( 𝐷  −  ( ( 𝐶  ·  𝐴 )  /  4 ) )  +  ( ( ( ( 𝐴 ↑ 2 )  ·  𝐵 )  /  ; 1 6 )  −  ( ( 3  /  ; ; 2 5 6 )  ·  ( 𝐴 ↑ 4 ) ) ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							3cn | 
							⊢ 3  ∈  ℂ  | 
						
						
							| 9 | 
							
								
							 | 
							8cn | 
							⊢ 8  ∈  ℂ  | 
						
						
							| 10 | 
							
								
							 | 
							8nn | 
							⊢ 8  ∈  ℕ  | 
						
						
							| 11 | 
							
								10
							 | 
							nnne0i | 
							⊢ 8  ≠  0  | 
						
						
							| 12 | 
							
								8 9 11
							 | 
							divcli | 
							⊢ ( 3  /  8 )  ∈  ℂ  | 
						
						
							| 13 | 
							
								1
							 | 
							sqcld | 
							⊢ ( 𝜑  →  ( 𝐴 ↑ 2 )  ∈  ℂ )  | 
						
						
							| 14 | 
							
								
							 | 
							mulcl | 
							⊢ ( ( ( 3  /  8 )  ∈  ℂ  ∧  ( 𝐴 ↑ 2 )  ∈  ℂ )  →  ( ( 3  /  8 )  ·  ( 𝐴 ↑ 2 ) )  ∈  ℂ )  | 
						
						
							| 15 | 
							
								12 13 14
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( ( 3  /  8 )  ·  ( 𝐴 ↑ 2 ) )  ∈  ℂ )  | 
						
						
							| 16 | 
							
								2 15
							 | 
							subcld | 
							⊢ ( 𝜑  →  ( 𝐵  −  ( ( 3  /  8 )  ·  ( 𝐴 ↑ 2 ) ) )  ∈  ℂ )  | 
						
						
							| 17 | 
							
								5 16
							 | 
							eqeltrd | 
							⊢ ( 𝜑  →  𝑃  ∈  ℂ )  | 
						
						
							| 18 | 
							
								1 2
							 | 
							mulcld | 
							⊢ ( 𝜑  →  ( 𝐴  ·  𝐵 )  ∈  ℂ )  | 
						
						
							| 19 | 
							
								18
							 | 
							halfcld | 
							⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐵 )  /  2 )  ∈  ℂ )  | 
						
						
							| 20 | 
							
								3 19
							 | 
							subcld | 
							⊢ ( 𝜑  →  ( 𝐶  −  ( ( 𝐴  ·  𝐵 )  /  2 ) )  ∈  ℂ )  | 
						
						
							| 21 | 
							
								
							 | 
							3nn0 | 
							⊢ 3  ∈  ℕ0  | 
						
						
							| 22 | 
							
								
							 | 
							expcl | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  3  ∈  ℕ0 )  →  ( 𝐴 ↑ 3 )  ∈  ℂ )  | 
						
						
							| 23 | 
							
								1 21 22
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( 𝐴 ↑ 3 )  ∈  ℂ )  | 
						
						
							| 24 | 
							
								9
							 | 
							a1i | 
							⊢ ( 𝜑  →  8  ∈  ℂ )  | 
						
						
							| 25 | 
							
								11
							 | 
							a1i | 
							⊢ ( 𝜑  →  8  ≠  0 )  | 
						
						
							| 26 | 
							
								23 24 25
							 | 
							divcld | 
							⊢ ( 𝜑  →  ( ( 𝐴 ↑ 3 )  /  8 )  ∈  ℂ )  | 
						
						
							| 27 | 
							
								20 26
							 | 
							addcld | 
							⊢ ( 𝜑  →  ( ( 𝐶  −  ( ( 𝐴  ·  𝐵 )  /  2 ) )  +  ( ( 𝐴 ↑ 3 )  /  8 ) )  ∈  ℂ )  | 
						
						
							| 28 | 
							
								6 27
							 | 
							eqeltrd | 
							⊢ ( 𝜑  →  𝑄  ∈  ℂ )  | 
						
						
							| 29 | 
							
								3 1
							 | 
							mulcld | 
							⊢ ( 𝜑  →  ( 𝐶  ·  𝐴 )  ∈  ℂ )  | 
						
						
							| 30 | 
							
								
							 | 
							4cn | 
							⊢ 4  ∈  ℂ  | 
						
						
							| 31 | 
							
								30
							 | 
							a1i | 
							⊢ ( 𝜑  →  4  ∈  ℂ )  | 
						
						
							| 32 | 
							
								
							 | 
							4ne0 | 
							⊢ 4  ≠  0  | 
						
						
							| 33 | 
							
								32
							 | 
							a1i | 
							⊢ ( 𝜑  →  4  ≠  0 )  | 
						
						
							| 34 | 
							
								29 31 33
							 | 
							divcld | 
							⊢ ( 𝜑  →  ( ( 𝐶  ·  𝐴 )  /  4 )  ∈  ℂ )  | 
						
						
							| 35 | 
							
								4 34
							 | 
							subcld | 
							⊢ ( 𝜑  →  ( 𝐷  −  ( ( 𝐶  ·  𝐴 )  /  4 ) )  ∈  ℂ )  | 
						
						
							| 36 | 
							
								13 2
							 | 
							mulcld | 
							⊢ ( 𝜑  →  ( ( 𝐴 ↑ 2 )  ·  𝐵 )  ∈  ℂ )  | 
						
						
							| 37 | 
							
								
							 | 
							1nn0 | 
							⊢ 1  ∈  ℕ0  | 
						
						
							| 38 | 
							
								
							 | 
							6nn | 
							⊢ 6  ∈  ℕ  | 
						
						
							| 39 | 
							
								37 38
							 | 
							decnncl | 
							⊢ ; 1 6  ∈  ℕ  | 
						
						
							| 40 | 
							
								39
							 | 
							nncni | 
							⊢ ; 1 6  ∈  ℂ  | 
						
						
							| 41 | 
							
								40
							 | 
							a1i | 
							⊢ ( 𝜑  →  ; 1 6  ∈  ℂ )  | 
						
						
							| 42 | 
							
								39
							 | 
							nnne0i | 
							⊢ ; 1 6  ≠  0  | 
						
						
							| 43 | 
							
								42
							 | 
							a1i | 
							⊢ ( 𝜑  →  ; 1 6  ≠  0 )  | 
						
						
							| 44 | 
							
								36 41 43
							 | 
							divcld | 
							⊢ ( 𝜑  →  ( ( ( 𝐴 ↑ 2 )  ·  𝐵 )  /  ; 1 6 )  ∈  ℂ )  | 
						
						
							| 45 | 
							
								
							 | 
							2nn0 | 
							⊢ 2  ∈  ℕ0  | 
						
						
							| 46 | 
							
								
							 | 
							5nn0 | 
							⊢ 5  ∈  ℕ0  | 
						
						
							| 47 | 
							
								45 46
							 | 
							deccl | 
							⊢ ; 2 5  ∈  ℕ0  | 
						
						
							| 48 | 
							
								47 38
							 | 
							decnncl | 
							⊢ ; ; 2 5 6  ∈  ℕ  | 
						
						
							| 49 | 
							
								48
							 | 
							nncni | 
							⊢ ; ; 2 5 6  ∈  ℂ  | 
						
						
							| 50 | 
							
								48
							 | 
							nnne0i | 
							⊢ ; ; 2 5 6  ≠  0  | 
						
						
							| 51 | 
							
								8 49 50
							 | 
							divcli | 
							⊢ ( 3  /  ; ; 2 5 6 )  ∈  ℂ  | 
						
						
							| 52 | 
							
								
							 | 
							4nn0 | 
							⊢ 4  ∈  ℕ0  | 
						
						
							| 53 | 
							
								
							 | 
							expcl | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  4  ∈  ℕ0 )  →  ( 𝐴 ↑ 4 )  ∈  ℂ )  | 
						
						
							| 54 | 
							
								1 52 53
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( 𝐴 ↑ 4 )  ∈  ℂ )  | 
						
						
							| 55 | 
							
								
							 | 
							mulcl | 
							⊢ ( ( ( 3  /  ; ; 2 5 6 )  ∈  ℂ  ∧  ( 𝐴 ↑ 4 )  ∈  ℂ )  →  ( ( 3  /  ; ; 2 5 6 )  ·  ( 𝐴 ↑ 4 ) )  ∈  ℂ )  | 
						
						
							| 56 | 
							
								51 54 55
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( ( 3  /  ; ; 2 5 6 )  ·  ( 𝐴 ↑ 4 ) )  ∈  ℂ )  | 
						
						
							| 57 | 
							
								44 56
							 | 
							subcld | 
							⊢ ( 𝜑  →  ( ( ( ( 𝐴 ↑ 2 )  ·  𝐵 )  /  ; 1 6 )  −  ( ( 3  /  ; ; 2 5 6 )  ·  ( 𝐴 ↑ 4 ) ) )  ∈  ℂ )  | 
						
						
							| 58 | 
							
								35 57
							 | 
							addcld | 
							⊢ ( 𝜑  →  ( ( 𝐷  −  ( ( 𝐶  ·  𝐴 )  /  4 ) )  +  ( ( ( ( 𝐴 ↑ 2 )  ·  𝐵 )  /  ; 1 6 )  −  ( ( 3  /  ; ; 2 5 6 )  ·  ( 𝐴 ↑ 4 ) ) ) )  ∈  ℂ )  | 
						
						
							| 59 | 
							
								7 58
							 | 
							eqeltrd | 
							⊢ ( 𝜑  →  𝑅  ∈  ℂ )  | 
						
						
							| 60 | 
							
								17 28 59
							 | 
							3jca | 
							⊢ ( 𝜑  →  ( 𝑃  ∈  ℂ  ∧  𝑄  ∈  ℂ  ∧  𝑅  ∈  ℂ ) )  |