Step |
Hyp |
Ref |
Expression |
1 |
|
quart1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
quart1.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
3 |
|
quart1.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
4 |
|
quart1.d |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
5 |
|
quart1.p |
⊢ ( 𝜑 → 𝑃 = ( 𝐵 − ( ( 3 / 8 ) · ( 𝐴 ↑ 2 ) ) ) ) |
6 |
|
quart1.q |
⊢ ( 𝜑 → 𝑄 = ( ( 𝐶 − ( ( 𝐴 · 𝐵 ) / 2 ) ) + ( ( 𝐴 ↑ 3 ) / 8 ) ) ) |
7 |
|
quart1.r |
⊢ ( 𝜑 → 𝑅 = ( ( 𝐷 − ( ( 𝐶 · 𝐴 ) / 4 ) ) + ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) − ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) ) ) |
8 |
|
quart1.x |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
9 |
|
quart1.y |
⊢ ( 𝜑 → 𝑌 = ( 𝑋 + ( 𝐴 / 4 ) ) ) |
10 |
1 2
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
11 |
10
|
halfcld |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) / 2 ) ∈ ℂ ) |
12 |
3 11
|
subcld |
⊢ ( 𝜑 → ( 𝐶 − ( ( 𝐴 · 𝐵 ) / 2 ) ) ∈ ℂ ) |
13 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
14 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝐴 ↑ 3 ) ∈ ℂ ) |
15 |
1 13 14
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 ↑ 3 ) ∈ ℂ ) |
16 |
|
8cn |
⊢ 8 ∈ ℂ |
17 |
16
|
a1i |
⊢ ( 𝜑 → 8 ∈ ℂ ) |
18 |
|
8nn |
⊢ 8 ∈ ℕ |
19 |
18
|
nnne0i |
⊢ 8 ≠ 0 |
20 |
19
|
a1i |
⊢ ( 𝜑 → 8 ≠ 0 ) |
21 |
15 17 20
|
divcld |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 3 ) / 8 ) ∈ ℂ ) |
22 |
|
4cn |
⊢ 4 ∈ ℂ |
23 |
22
|
a1i |
⊢ ( 𝜑 → 4 ∈ ℂ ) |
24 |
|
4ne0 |
⊢ 4 ≠ 0 |
25 |
24
|
a1i |
⊢ ( 𝜑 → 4 ≠ 0 ) |
26 |
1 23 25
|
divcld |
⊢ ( 𝜑 → ( 𝐴 / 4 ) ∈ ℂ ) |
27 |
12 21 26
|
adddird |
⊢ ( 𝜑 → ( ( ( 𝐶 − ( ( 𝐴 · 𝐵 ) / 2 ) ) + ( ( 𝐴 ↑ 3 ) / 8 ) ) · ( 𝐴 / 4 ) ) = ( ( ( 𝐶 − ( ( 𝐴 · 𝐵 ) / 2 ) ) · ( 𝐴 / 4 ) ) + ( ( ( 𝐴 ↑ 3 ) / 8 ) · ( 𝐴 / 4 ) ) ) ) |
28 |
6
|
oveq1d |
⊢ ( 𝜑 → ( 𝑄 · ( 𝐴 / 4 ) ) = ( ( ( 𝐶 − ( ( 𝐴 · 𝐵 ) / 2 ) ) + ( ( 𝐴 ↑ 3 ) / 8 ) ) · ( 𝐴 / 4 ) ) ) |
29 |
3 1 23 25
|
divassd |
⊢ ( 𝜑 → ( ( 𝐶 · 𝐴 ) / 4 ) = ( 𝐶 · ( 𝐴 / 4 ) ) ) |
30 |
1
|
sqvald |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) |
31 |
30
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · 𝐵 ) = ( ( 𝐴 · 𝐴 ) · 𝐵 ) ) |
32 |
1 1 2
|
mul32d |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐴 ) · 𝐵 ) = ( ( 𝐴 · 𝐵 ) · 𝐴 ) ) |
33 |
31 32
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · 𝐵 ) = ( ( 𝐴 · 𝐵 ) · 𝐴 ) ) |
34 |
33
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) = ( ( ( 𝐴 · 𝐵 ) · 𝐴 ) / 8 ) ) |
35 |
|
2cn |
⊢ 2 ∈ ℂ |
36 |
|
4t2e8 |
⊢ ( 4 · 2 ) = 8 |
37 |
22 35 36
|
mulcomli |
⊢ ( 2 · 4 ) = 8 |
38 |
37
|
oveq2i |
⊢ ( ( ( 𝐴 · 𝐵 ) · 𝐴 ) / ( 2 · 4 ) ) = ( ( ( 𝐴 · 𝐵 ) · 𝐴 ) / 8 ) |
39 |
34 38
|
eqtr4di |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) = ( ( ( 𝐴 · 𝐵 ) · 𝐴 ) / ( 2 · 4 ) ) ) |
40 |
35
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
41 |
|
2ne0 |
⊢ 2 ≠ 0 |
42 |
41
|
a1i |
⊢ ( 𝜑 → 2 ≠ 0 ) |
43 |
10 40 1 23 42 25
|
divmuldivd |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐵 ) / 2 ) · ( 𝐴 / 4 ) ) = ( ( ( 𝐴 · 𝐵 ) · 𝐴 ) / ( 2 · 4 ) ) ) |
44 |
39 43
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) = ( ( ( 𝐴 · 𝐵 ) / 2 ) · ( 𝐴 / 4 ) ) ) |
45 |
29 44
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐶 · 𝐴 ) / 4 ) − ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) ) = ( ( 𝐶 · ( 𝐴 / 4 ) ) − ( ( ( 𝐴 · 𝐵 ) / 2 ) · ( 𝐴 / 4 ) ) ) ) |
46 |
3 11 26
|
subdird |
⊢ ( 𝜑 → ( ( 𝐶 − ( ( 𝐴 · 𝐵 ) / 2 ) ) · ( 𝐴 / 4 ) ) = ( ( 𝐶 · ( 𝐴 / 4 ) ) − ( ( ( 𝐴 · 𝐵 ) / 2 ) · ( 𝐴 / 4 ) ) ) ) |
47 |
45 46
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝐶 · 𝐴 ) / 4 ) − ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) ) = ( ( 𝐶 − ( ( 𝐴 · 𝐵 ) / 2 ) ) · ( 𝐴 / 4 ) ) ) |
48 |
|
df-4 |
⊢ 4 = ( 3 + 1 ) |
49 |
48
|
oveq2i |
⊢ ( 𝐴 ↑ 4 ) = ( 𝐴 ↑ ( 3 + 1 ) ) |
50 |
|
expp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝐴 ↑ ( 3 + 1 ) ) = ( ( 𝐴 ↑ 3 ) · 𝐴 ) ) |
51 |
1 13 50
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 ↑ ( 3 + 1 ) ) = ( ( 𝐴 ↑ 3 ) · 𝐴 ) ) |
52 |
49 51
|
eqtrid |
⊢ ( 𝜑 → ( 𝐴 ↑ 4 ) = ( ( 𝐴 ↑ 3 ) · 𝐴 ) ) |
53 |
52
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) / 8 ) = ( ( ( 𝐴 ↑ 3 ) · 𝐴 ) / 8 ) ) |
54 |
15 1 17 20
|
div23d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 3 ) · 𝐴 ) / 8 ) = ( ( ( 𝐴 ↑ 3 ) / 8 ) · 𝐴 ) ) |
55 |
53 54
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) / 8 ) = ( ( ( 𝐴 ↑ 3 ) / 8 ) · 𝐴 ) ) |
56 |
55
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) = ( ( ( ( 𝐴 ↑ 3 ) / 8 ) · 𝐴 ) / 4 ) ) |
57 |
21 1 23 25
|
divassd |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 3 ) / 8 ) · 𝐴 ) / 4 ) = ( ( ( 𝐴 ↑ 3 ) / 8 ) · ( 𝐴 / 4 ) ) ) |
58 |
56 57
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) = ( ( ( 𝐴 ↑ 3 ) / 8 ) · ( 𝐴 / 4 ) ) ) |
59 |
47 58
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( 𝐶 · 𝐴 ) / 4 ) − ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) ) + ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) ) = ( ( ( 𝐶 − ( ( 𝐴 · 𝐵 ) / 2 ) ) · ( 𝐴 / 4 ) ) + ( ( ( 𝐴 ↑ 3 ) / 8 ) · ( 𝐴 / 4 ) ) ) ) |
60 |
27 28 59
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑄 · ( 𝐴 / 4 ) ) = ( ( ( ( 𝐶 · 𝐴 ) / 4 ) − ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) ) + ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) ) ) |
61 |
3 1
|
mulcld |
⊢ ( 𝜑 → ( 𝐶 · 𝐴 ) ∈ ℂ ) |
62 |
61 23 25
|
divcld |
⊢ ( 𝜑 → ( ( 𝐶 · 𝐴 ) / 4 ) ∈ ℂ ) |
63 |
1
|
sqcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
64 |
63 2
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · 𝐵 ) ∈ ℂ ) |
65 |
64 17 20
|
divcld |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) ∈ ℂ ) |
66 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
67 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 4 ∈ ℕ0 ) → ( 𝐴 ↑ 4 ) ∈ ℂ ) |
68 |
1 66 67
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 ↑ 4 ) ∈ ℂ ) |
69 |
68 17 20
|
divcld |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) / 8 ) ∈ ℂ ) |
70 |
69 23 25
|
divcld |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) ∈ ℂ ) |
71 |
62 65 70
|
subadd23d |
⊢ ( 𝜑 → ( ( ( ( 𝐶 · 𝐴 ) / 4 ) − ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) ) + ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) ) = ( ( ( 𝐶 · 𝐴 ) / 4 ) + ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) − ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) ) ) ) |
72 |
70 65
|
subcld |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) − ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) ) ∈ ℂ ) |
73 |
62 72
|
addcomd |
⊢ ( 𝜑 → ( ( ( 𝐶 · 𝐴 ) / 4 ) + ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) − ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) ) ) = ( ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) − ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) ) + ( ( 𝐶 · 𝐴 ) / 4 ) ) ) |
74 |
60 71 73
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑄 · ( 𝐴 / 4 ) ) = ( ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) − ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) ) + ( ( 𝐶 · 𝐴 ) / 4 ) ) ) |
75 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
76 |
|
6nn |
⊢ 6 ∈ ℕ |
77 |
75 76
|
decnncl |
⊢ ; 1 6 ∈ ℕ |
78 |
77
|
nncni |
⊢ ; 1 6 ∈ ℂ |
79 |
78
|
a1i |
⊢ ( 𝜑 → ; 1 6 ∈ ℂ ) |
80 |
77
|
nnne0i |
⊢ ; 1 6 ≠ 0 |
81 |
80
|
a1i |
⊢ ( 𝜑 → ; 1 6 ≠ 0 ) |
82 |
64 79 81
|
divcld |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) ∈ ℂ ) |
83 |
|
3cn |
⊢ 3 ∈ ℂ |
84 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
85 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
86 |
84 85
|
deccl |
⊢ ; 2 5 ∈ ℕ0 |
87 |
86 76
|
decnncl |
⊢ ; ; 2 5 6 ∈ ℕ |
88 |
87
|
nncni |
⊢ ; ; 2 5 6 ∈ ℂ |
89 |
87
|
nnne0i |
⊢ ; ; 2 5 6 ≠ 0 |
90 |
83 88 89
|
divcli |
⊢ ( 3 / ; ; 2 5 6 ) ∈ ℂ |
91 |
|
mulcl |
⊢ ( ( ( 3 / ; ; 2 5 6 ) ∈ ℂ ∧ ( 𝐴 ↑ 4 ) ∈ ℂ ) → ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ∈ ℂ ) |
92 |
90 68 91
|
sylancr |
⊢ ( 𝜑 → ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ∈ ℂ ) |
93 |
82 92
|
subcld |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) − ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) ∈ ℂ ) |
94 |
4 93 62
|
addsubd |
⊢ ( 𝜑 → ( ( 𝐷 + ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) − ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) ) − ( ( 𝐶 · 𝐴 ) / 4 ) ) = ( ( 𝐷 − ( ( 𝐶 · 𝐴 ) / 4 ) ) + ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) − ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) ) ) |
95 |
7 94
|
eqtr4d |
⊢ ( 𝜑 → 𝑅 = ( ( 𝐷 + ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) − ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) ) − ( ( 𝐶 · 𝐴 ) / 4 ) ) ) |
96 |
74 95
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑄 · ( 𝐴 / 4 ) ) + 𝑅 ) = ( ( ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) − ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) ) + ( ( 𝐶 · 𝐴 ) / 4 ) ) + ( ( 𝐷 + ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) − ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) ) − ( ( 𝐶 · 𝐴 ) / 4 ) ) ) ) |
97 |
4 93
|
addcld |
⊢ ( 𝜑 → ( 𝐷 + ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) − ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) ) ∈ ℂ ) |
98 |
72 62 97
|
ppncand |
⊢ ( 𝜑 → ( ( ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) − ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) ) + ( ( 𝐶 · 𝐴 ) / 4 ) ) + ( ( 𝐷 + ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) − ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) ) − ( ( 𝐶 · 𝐴 ) / 4 ) ) ) = ( ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) − ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) ) + ( 𝐷 + ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) − ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) ) ) ) |
99 |
72 4 93
|
add12d |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) − ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) ) + ( 𝐷 + ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) − ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) ) ) = ( 𝐷 + ( ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) − ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) ) + ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) − ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) ) ) ) |
100 |
65 92
|
addcld |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) + ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) ∈ ℂ ) |
101 |
70 82
|
addcld |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) + ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) ) ∈ ℂ ) |
102 |
100 101
|
negsubdi2d |
⊢ ( 𝜑 → - ( ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) + ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) − ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) + ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) ) ) = ( ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) + ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) ) − ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) + ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) ) ) |
103 |
70 82
|
addcomd |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) + ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) ) = ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) + ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) ) ) |
104 |
103
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) + ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) − ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) + ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) ) ) = ( ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) + ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) − ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) + ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) ) ) ) |
105 |
65 92 82 70
|
addsub4d |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) + ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) − ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) + ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) ) ) = ( ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) − ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) ) + ( ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) − ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) ) ) ) |
106 |
83
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℂ ) |
107 |
88
|
a1i |
⊢ ( 𝜑 → ; ; 2 5 6 ∈ ℂ ) |
108 |
89
|
a1i |
⊢ ( 𝜑 → ; ; 2 5 6 ≠ 0 ) |
109 |
106 68 107 108
|
divassd |
⊢ ( 𝜑 → ( ( 3 · ( 𝐴 ↑ 4 ) ) / ; ; 2 5 6 ) = ( 3 · ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ) ) |
110 |
106 68 107 108
|
div23d |
⊢ ( 𝜑 → ( ( 3 · ( 𝐴 ↑ 4 ) ) / ; ; 2 5 6 ) = ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) |
111 |
|
1p2e3 |
⊢ ( 1 + 2 ) = 3 |
112 |
111
|
oveq1i |
⊢ ( ( 1 + 2 ) · ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ) = ( 3 · ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ) |
113 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
114 |
68 107 108
|
divcld |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ∈ ℂ ) |
115 |
113 40 114
|
adddird |
⊢ ( 𝜑 → ( ( 1 + 2 ) · ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ) = ( ( 1 · ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ) + ( 2 · ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ) ) ) |
116 |
112 115
|
eqtr3id |
⊢ ( 𝜑 → ( 3 · ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ) = ( ( 1 · ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ) + ( 2 · ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ) ) ) |
117 |
114
|
mulid2d |
⊢ ( 𝜑 → ( 1 · ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ) = ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ) |
118 |
117
|
oveq1d |
⊢ ( 𝜑 → ( ( 1 · ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ) + ( 2 · ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ) ) = ( ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) + ( 2 · ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ) ) ) |
119 |
116 118
|
eqtrd |
⊢ ( 𝜑 → ( 3 · ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ) = ( ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) + ( 2 · ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ) ) ) |
120 |
109 110 119
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) = ( ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) + ( 2 · ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ) ) ) |
121 |
48
|
oveq1i |
⊢ ( 4 · ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) = ( ( 3 + 1 ) · ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) |
122 |
70 23 25
|
divcld |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ∈ ℂ ) |
123 |
106 113 122
|
adddird |
⊢ ( 𝜑 → ( ( 3 + 1 ) · ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) = ( ( 3 · ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) + ( 1 · ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) ) ) |
124 |
121 123
|
eqtrid |
⊢ ( 𝜑 → ( 4 · ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) = ( ( 3 · ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) + ( 1 · ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) ) ) |
125 |
70 23 25
|
divcan2d |
⊢ ( 𝜑 → ( 4 · ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) = ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) ) |
126 |
122
|
mulid2d |
⊢ ( 𝜑 → ( 1 · ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) = ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) |
127 |
69 23 23 25 25
|
divdiv1d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) = ( ( ( 𝐴 ↑ 4 ) / 8 ) / ( 4 · 4 ) ) ) |
128 |
|
4t4e16 |
⊢ ( 4 · 4 ) = ; 1 6 |
129 |
128
|
oveq2i |
⊢ ( ( ( 𝐴 ↑ 4 ) / 8 ) / ( 4 · 4 ) ) = ( ( ( 𝐴 ↑ 4 ) / 8 ) / ; 1 6 ) |
130 |
127 129
|
eqtrdi |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) = ( ( ( 𝐴 ↑ 4 ) / 8 ) / ; 1 6 ) ) |
131 |
68 17 79 20 81
|
divdiv1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) / 8 ) / ; 1 6 ) = ( ( 𝐴 ↑ 4 ) / ( 8 · ; 1 6 ) ) ) |
132 |
16 78
|
mulcli |
⊢ ( 8 · ; 1 6 ) ∈ ℂ |
133 |
132
|
a1i |
⊢ ( 𝜑 → ( 8 · ; 1 6 ) ∈ ℂ ) |
134 |
16 78 19 80
|
mulne0i |
⊢ ( 8 · ; 1 6 ) ≠ 0 |
135 |
134
|
a1i |
⊢ ( 𝜑 → ( 8 · ; 1 6 ) ≠ 0 ) |
136 |
68 133 135
|
divcld |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) / ( 8 · ; 1 6 ) ) ∈ ℂ ) |
137 |
136 40 42
|
divcan2d |
⊢ ( 𝜑 → ( 2 · ( ( ( 𝐴 ↑ 4 ) / ( 8 · ; 1 6 ) ) / 2 ) ) = ( ( 𝐴 ↑ 4 ) / ( 8 · ; 1 6 ) ) ) |
138 |
68 133 40 135 42
|
divdiv1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) / ( 8 · ; 1 6 ) ) / 2 ) = ( ( 𝐴 ↑ 4 ) / ( ( 8 · ; 1 6 ) · 2 ) ) ) |
139 |
16 78 35
|
mul32i |
⊢ ( ( 8 · ; 1 6 ) · 2 ) = ( ( 8 · 2 ) · ; 1 6 ) |
140 |
|
2exp4 |
⊢ ( 2 ↑ 4 ) = ; 1 6 |
141 |
|
8t2e16 |
⊢ ( 8 · 2 ) = ; 1 6 |
142 |
140 141
|
eqtr4i |
⊢ ( 2 ↑ 4 ) = ( 8 · 2 ) |
143 |
142 140
|
oveq12i |
⊢ ( ( 2 ↑ 4 ) · ( 2 ↑ 4 ) ) = ( ( 8 · 2 ) · ; 1 6 ) |
144 |
|
4p4e8 |
⊢ ( 4 + 4 ) = 8 |
145 |
144
|
oveq2i |
⊢ ( 2 ↑ ( 4 + 4 ) ) = ( 2 ↑ 8 ) |
146 |
|
expadd |
⊢ ( ( 2 ∈ ℂ ∧ 4 ∈ ℕ0 ∧ 4 ∈ ℕ0 ) → ( 2 ↑ ( 4 + 4 ) ) = ( ( 2 ↑ 4 ) · ( 2 ↑ 4 ) ) ) |
147 |
35 66 66 146
|
mp3an |
⊢ ( 2 ↑ ( 4 + 4 ) ) = ( ( 2 ↑ 4 ) · ( 2 ↑ 4 ) ) |
148 |
|
2exp8 |
⊢ ( 2 ↑ 8 ) = ; ; 2 5 6 |
149 |
145 147 148
|
3eqtr3i |
⊢ ( ( 2 ↑ 4 ) · ( 2 ↑ 4 ) ) = ; ; 2 5 6 |
150 |
139 143 149
|
3eqtr2i |
⊢ ( ( 8 · ; 1 6 ) · 2 ) = ; ; 2 5 6 |
151 |
150
|
oveq2i |
⊢ ( ( 𝐴 ↑ 4 ) / ( ( 8 · ; 1 6 ) · 2 ) ) = ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) |
152 |
138 151
|
eqtrdi |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) / ( 8 · ; 1 6 ) ) / 2 ) = ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ) |
153 |
152
|
oveq2d |
⊢ ( 𝜑 → ( 2 · ( ( ( 𝐴 ↑ 4 ) / ( 8 · ; 1 6 ) ) / 2 ) ) = ( 2 · ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ) ) |
154 |
131 137 153
|
3eqtr2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) / 8 ) / ; 1 6 ) = ( 2 · ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ) ) |
155 |
126 130 154
|
3eqtrd |
⊢ ( 𝜑 → ( 1 · ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) = ( 2 · ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ) ) |
156 |
155
|
oveq2d |
⊢ ( 𝜑 → ( ( 3 · ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) + ( 1 · ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) ) = ( ( 3 · ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) + ( 2 · ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ) ) ) |
157 |
124 125 156
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) = ( ( 3 · ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) + ( 2 · ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ) ) ) |
158 |
120 157
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) − ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) ) = ( ( ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) + ( 2 · ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ) ) − ( ( 3 · ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) + ( 2 · ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ) ) ) ) |
159 |
|
mulcl |
⊢ ( ( 3 ∈ ℂ ∧ ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ∈ ℂ ) → ( 3 · ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) ∈ ℂ ) |
160 |
83 122 159
|
sylancr |
⊢ ( 𝜑 → ( 3 · ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) ∈ ℂ ) |
161 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ∈ ℂ ) → ( 2 · ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ) ∈ ℂ ) |
162 |
35 114 161
|
sylancr |
⊢ ( 𝜑 → ( 2 · ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ) ∈ ℂ ) |
163 |
114 160 162
|
pnpcan2d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) + ( 2 · ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ) ) − ( ( 3 · ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) + ( 2 · ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) ) ) ) = ( ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) − ( 3 · ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) ) ) |
164 |
158 163
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) − ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) ) = ( ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) − ( 3 · ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) ) ) |
165 |
164
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) + ( ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) − ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) + ( ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) − ( 3 · ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) ) ) ) |
166 |
82 114 160
|
addsub12d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) + ( ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) − ( 3 · ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) ) ) = ( ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) + ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) − ( 3 · ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) ) ) ) |
167 |
165 166
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) + ( ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) − ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) ) ) = ( ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) + ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) − ( 3 · ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) ) ) ) |
168 |
64 17 40 20 42
|
divdiv1d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) / 2 ) = ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ( 8 · 2 ) ) ) |
169 |
141
|
oveq2i |
⊢ ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ( 8 · 2 ) ) = ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) |
170 |
168 169
|
eqtrdi |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) / 2 ) = ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) ) |
171 |
170
|
oveq2d |
⊢ ( 𝜑 → ( 2 · ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) / 2 ) ) = ( 2 · ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) ) ) |
172 |
65 40 42
|
divcan2d |
⊢ ( 𝜑 → ( 2 · ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) / 2 ) ) = ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) ) |
173 |
82
|
2timesd |
⊢ ( 𝜑 → ( 2 · ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) ) = ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) + ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) ) ) |
174 |
171 172 173
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) = ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) + ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) ) ) |
175 |
82 82 174
|
mvrladdd |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) − ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) ) = ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) ) |
176 |
175
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) − ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) ) + ( ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) − ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) + ( ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) − ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) ) ) ) |
177 |
5
|
oveq1d |
⊢ ( 𝜑 → ( 𝑃 · ( ( 𝐴 / 4 ) ↑ 2 ) ) = ( ( 𝐵 − ( ( 3 / 8 ) · ( 𝐴 ↑ 2 ) ) ) · ( ( 𝐴 / 4 ) ↑ 2 ) ) ) |
178 |
83 16 19
|
divcli |
⊢ ( 3 / 8 ) ∈ ℂ |
179 |
|
mulcl |
⊢ ( ( ( 3 / 8 ) ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( ( 3 / 8 ) · ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
180 |
178 63 179
|
sylancr |
⊢ ( 𝜑 → ( ( 3 / 8 ) · ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
181 |
26
|
sqcld |
⊢ ( 𝜑 → ( ( 𝐴 / 4 ) ↑ 2 ) ∈ ℂ ) |
182 |
2 180 181
|
subdird |
⊢ ( 𝜑 → ( ( 𝐵 − ( ( 3 / 8 ) · ( 𝐴 ↑ 2 ) ) ) · ( ( 𝐴 / 4 ) ↑ 2 ) ) = ( ( 𝐵 · ( ( 𝐴 / 4 ) ↑ 2 ) ) − ( ( ( 3 / 8 ) · ( 𝐴 ↑ 2 ) ) · ( ( 𝐴 / 4 ) ↑ 2 ) ) ) ) |
183 |
1 23 25
|
sqdivd |
⊢ ( 𝜑 → ( ( 𝐴 / 4 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) / ( 4 ↑ 2 ) ) ) |
184 |
22
|
sqvali |
⊢ ( 4 ↑ 2 ) = ( 4 · 4 ) |
185 |
184 128
|
eqtri |
⊢ ( 4 ↑ 2 ) = ; 1 6 |
186 |
185
|
oveq2i |
⊢ ( ( 𝐴 ↑ 2 ) / ( 4 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) / ; 1 6 ) |
187 |
183 186
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝐴 / 4 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) / ; 1 6 ) ) |
188 |
187
|
oveq2d |
⊢ ( 𝜑 → ( 𝐵 · ( ( 𝐴 / 4 ) ↑ 2 ) ) = ( 𝐵 · ( ( 𝐴 ↑ 2 ) / ; 1 6 ) ) ) |
189 |
2 63 79 81
|
divassd |
⊢ ( 𝜑 → ( ( 𝐵 · ( 𝐴 ↑ 2 ) ) / ; 1 6 ) = ( 𝐵 · ( ( 𝐴 ↑ 2 ) / ; 1 6 ) ) ) |
190 |
2 63
|
mulcomd |
⊢ ( 𝜑 → ( 𝐵 · ( 𝐴 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) |
191 |
190
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐵 · ( 𝐴 ↑ 2 ) ) / ; 1 6 ) = ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) ) |
192 |
188 189 191
|
3eqtr2d |
⊢ ( 𝜑 → ( 𝐵 · ( ( 𝐴 / 4 ) ↑ 2 ) ) = ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) ) |
193 |
178
|
a1i |
⊢ ( 𝜑 → ( 3 / 8 ) ∈ ℂ ) |
194 |
193 63 63
|
mulassd |
⊢ ( 𝜑 → ( ( ( 3 / 8 ) · ( 𝐴 ↑ 2 ) ) · ( 𝐴 ↑ 2 ) ) = ( ( 3 / 8 ) · ( ( 𝐴 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) |
195 |
106 68 17 20
|
div23d |
⊢ ( 𝜑 → ( ( 3 · ( 𝐴 ↑ 4 ) ) / 8 ) = ( ( 3 / 8 ) · ( 𝐴 ↑ 4 ) ) ) |
196 |
|
2p2e4 |
⊢ ( 2 + 2 ) = 4 |
197 |
196
|
oveq2i |
⊢ ( 𝐴 ↑ ( 2 + 2 ) ) = ( 𝐴 ↑ 4 ) |
198 |
84
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ0 ) |
199 |
1 198 198
|
expaddd |
⊢ ( 𝜑 → ( 𝐴 ↑ ( 2 + 2 ) ) = ( ( 𝐴 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) |
200 |
197 199
|
eqtr3id |
⊢ ( 𝜑 → ( 𝐴 ↑ 4 ) = ( ( 𝐴 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) |
201 |
200
|
oveq2d |
⊢ ( 𝜑 → ( ( 3 / 8 ) · ( 𝐴 ↑ 4 ) ) = ( ( 3 / 8 ) · ( ( 𝐴 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) |
202 |
195 201
|
eqtrd |
⊢ ( 𝜑 → ( ( 3 · ( 𝐴 ↑ 4 ) ) / 8 ) = ( ( 3 / 8 ) · ( ( 𝐴 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) |
203 |
106 68 17 20
|
divassd |
⊢ ( 𝜑 → ( ( 3 · ( 𝐴 ↑ 4 ) ) / 8 ) = ( 3 · ( ( 𝐴 ↑ 4 ) / 8 ) ) ) |
204 |
194 202 203
|
3eqtr2d |
⊢ ( 𝜑 → ( ( ( 3 / 8 ) · ( 𝐴 ↑ 2 ) ) · ( 𝐴 ↑ 2 ) ) = ( 3 · ( ( 𝐴 ↑ 4 ) / 8 ) ) ) |
205 |
204
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 3 / 8 ) · ( 𝐴 ↑ 2 ) ) · ( 𝐴 ↑ 2 ) ) / ( 4 ↑ 2 ) ) = ( ( 3 · ( ( 𝐴 ↑ 4 ) / 8 ) ) / ( 4 ↑ 2 ) ) ) |
206 |
185 79
|
eqeltrid |
⊢ ( 𝜑 → ( 4 ↑ 2 ) ∈ ℂ ) |
207 |
185 80
|
eqnetri |
⊢ ( 4 ↑ 2 ) ≠ 0 |
208 |
207
|
a1i |
⊢ ( 𝜑 → ( 4 ↑ 2 ) ≠ 0 ) |
209 |
180 63 206 208
|
divassd |
⊢ ( 𝜑 → ( ( ( ( 3 / 8 ) · ( 𝐴 ↑ 2 ) ) · ( 𝐴 ↑ 2 ) ) / ( 4 ↑ 2 ) ) = ( ( ( 3 / 8 ) · ( 𝐴 ↑ 2 ) ) · ( ( 𝐴 ↑ 2 ) / ( 4 ↑ 2 ) ) ) ) |
210 |
106 69 206 208
|
divassd |
⊢ ( 𝜑 → ( ( 3 · ( ( 𝐴 ↑ 4 ) / 8 ) ) / ( 4 ↑ 2 ) ) = ( 3 · ( ( ( 𝐴 ↑ 4 ) / 8 ) / ( 4 ↑ 2 ) ) ) ) |
211 |
205 209 210
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ( 3 / 8 ) · ( 𝐴 ↑ 2 ) ) · ( ( 𝐴 ↑ 2 ) / ( 4 ↑ 2 ) ) ) = ( 3 · ( ( ( 𝐴 ↑ 4 ) / 8 ) / ( 4 ↑ 2 ) ) ) ) |
212 |
183
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 3 / 8 ) · ( 𝐴 ↑ 2 ) ) · ( ( 𝐴 / 4 ) ↑ 2 ) ) = ( ( ( 3 / 8 ) · ( 𝐴 ↑ 2 ) ) · ( ( 𝐴 ↑ 2 ) / ( 4 ↑ 2 ) ) ) ) |
213 |
185
|
oveq2i |
⊢ ( ( ( 𝐴 ↑ 4 ) / 8 ) / ( 4 ↑ 2 ) ) = ( ( ( 𝐴 ↑ 4 ) / 8 ) / ; 1 6 ) |
214 |
130 213
|
eqtr4di |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) = ( ( ( 𝐴 ↑ 4 ) / 8 ) / ( 4 ↑ 2 ) ) ) |
215 |
214
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) = ( 3 · ( ( ( 𝐴 ↑ 4 ) / 8 ) / ( 4 ↑ 2 ) ) ) ) |
216 |
211 212 215
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( 3 / 8 ) · ( 𝐴 ↑ 2 ) ) · ( ( 𝐴 / 4 ) ↑ 2 ) ) = ( 3 · ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) ) |
217 |
192 216
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐵 · ( ( 𝐴 / 4 ) ↑ 2 ) ) − ( ( ( 3 / 8 ) · ( 𝐴 ↑ 2 ) ) · ( ( 𝐴 / 4 ) ↑ 2 ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) − ( 3 · ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) ) ) |
218 |
177 182 217
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑃 · ( ( 𝐴 / 4 ) ↑ 2 ) ) = ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) − ( 3 · ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) ) ) |
219 |
218
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) + ( 𝑃 · ( ( 𝐴 / 4 ) ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) + ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) − ( 3 · ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) / 4 ) ) ) ) ) |
220 |
167 176 219
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) − ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) ) + ( ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) − ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) ) ) = ( ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) + ( 𝑃 · ( ( 𝐴 / 4 ) ↑ 2 ) ) ) ) |
221 |
104 105 220
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) + ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) − ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) + ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) ) ) = ( ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) + ( 𝑃 · ( ( 𝐴 / 4 ) ↑ 2 ) ) ) ) |
222 |
221
|
negeqd |
⊢ ( 𝜑 → - ( ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) + ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) − ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) + ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) ) ) = - ( ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) + ( 𝑃 · ( ( 𝐴 / 4 ) ↑ 2 ) ) ) ) |
223 |
70 82 65 92
|
addsub4d |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) + ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) ) − ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) + ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) ) = ( ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) − ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) ) + ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) − ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) ) ) |
224 |
102 222 223
|
3eqtr3rd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) − ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) ) + ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) − ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) ) = - ( ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) + ( 𝑃 · ( ( 𝐴 / 4 ) ↑ 2 ) ) ) ) |
225 |
224
|
oveq2d |
⊢ ( 𝜑 → ( 𝐷 + ( ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) − ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) ) + ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) − ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) ) ) = ( 𝐷 + - ( ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) + ( 𝑃 · ( ( 𝐴 / 4 ) ↑ 2 ) ) ) ) ) |
226 |
2 180
|
subcld |
⊢ ( 𝜑 → ( 𝐵 − ( ( 3 / 8 ) · ( 𝐴 ↑ 2 ) ) ) ∈ ℂ ) |
227 |
5 226
|
eqeltrd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
228 |
227 181
|
mulcld |
⊢ ( 𝜑 → ( 𝑃 · ( ( 𝐴 / 4 ) ↑ 2 ) ) ∈ ℂ ) |
229 |
114 228
|
addcld |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) + ( 𝑃 · ( ( 𝐴 / 4 ) ↑ 2 ) ) ) ∈ ℂ ) |
230 |
4 229
|
negsubd |
⊢ ( 𝜑 → ( 𝐷 + - ( ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) + ( 𝑃 · ( ( 𝐴 / 4 ) ↑ 2 ) ) ) ) = ( 𝐷 − ( ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) + ( 𝑃 · ( ( 𝐴 / 4 ) ↑ 2 ) ) ) ) ) |
231 |
99 225 230
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 ↑ 4 ) / 8 ) / 4 ) − ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 8 ) ) + ( 𝐷 + ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) − ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) ) ) = ( 𝐷 − ( ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) + ( 𝑃 · ( ( 𝐴 / 4 ) ↑ 2 ) ) ) ) ) |
232 |
96 98 231
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑄 · ( 𝐴 / 4 ) ) + 𝑅 ) = ( 𝐷 − ( ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) + ( 𝑃 · ( ( 𝐴 / 4 ) ↑ 2 ) ) ) ) ) |
233 |
232
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) + ( 𝑃 · ( ( 𝐴 / 4 ) ↑ 2 ) ) ) + ( ( 𝑄 · ( 𝐴 / 4 ) ) + 𝑅 ) ) = ( ( ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) + ( 𝑃 · ( ( 𝐴 / 4 ) ↑ 2 ) ) ) + ( 𝐷 − ( ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) + ( 𝑃 · ( ( 𝐴 / 4 ) ↑ 2 ) ) ) ) ) ) |
234 |
229 4
|
pncan3d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) + ( 𝑃 · ( ( 𝐴 / 4 ) ↑ 2 ) ) ) + ( 𝐷 − ( ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) + ( 𝑃 · ( ( 𝐴 / 4 ) ↑ 2 ) ) ) ) ) = 𝐷 ) |
235 |
233 234
|
eqtr2d |
⊢ ( 𝜑 → 𝐷 = ( ( ( ( 𝐴 ↑ 4 ) / ; ; 2 5 6 ) + ( 𝑃 · ( ( 𝐴 / 4 ) ↑ 2 ) ) ) + ( ( 𝑄 · ( 𝐴 / 4 ) ) + 𝑅 ) ) ) |