Step |
Hyp |
Ref |
Expression |
1 |
|
quart.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
quart.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
3 |
|
quart.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
4 |
|
quart.d |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
5 |
|
quart.x |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
6 |
|
quart.e |
⊢ ( 𝜑 → 𝐸 = - ( 𝐴 / 4 ) ) |
7 |
|
quart.p |
⊢ ( 𝜑 → 𝑃 = ( 𝐵 − ( ( 3 / 8 ) · ( 𝐴 ↑ 2 ) ) ) ) |
8 |
|
quart.q |
⊢ ( 𝜑 → 𝑄 = ( ( 𝐶 − ( ( 𝐴 · 𝐵 ) / 2 ) ) + ( ( 𝐴 ↑ 3 ) / 8 ) ) ) |
9 |
|
quart.r |
⊢ ( 𝜑 → 𝑅 = ( ( 𝐷 − ( ( 𝐶 · 𝐴 ) / 4 ) ) + ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) − ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) ) ) |
10 |
|
quart.u |
⊢ ( 𝜑 → 𝑈 = ( ( 𝑃 ↑ 2 ) + ( ; 1 2 · 𝑅 ) ) ) |
11 |
|
quart.v |
⊢ ( 𝜑 → 𝑉 = ( ( - ( 2 · ( 𝑃 ↑ 3 ) ) − ( ; 2 7 · ( 𝑄 ↑ 2 ) ) ) + ( ; 7 2 · ( 𝑃 · 𝑅 ) ) ) ) |
12 |
|
quart.w |
⊢ ( 𝜑 → 𝑊 = ( √ ‘ ( ( 𝑉 ↑ 2 ) − ( 4 · ( 𝑈 ↑ 3 ) ) ) ) ) |
13 |
1 2 3 4 7 8 9
|
quart1cl |
⊢ ( 𝜑 → ( 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ ) ) |
14 |
13
|
simp1d |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
15 |
14
|
sqcld |
⊢ ( 𝜑 → ( 𝑃 ↑ 2 ) ∈ ℂ ) |
16 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
17 |
|
2nn |
⊢ 2 ∈ ℕ |
18 |
16 17
|
decnncl |
⊢ ; 1 2 ∈ ℕ |
19 |
18
|
nncni |
⊢ ; 1 2 ∈ ℂ |
20 |
13
|
simp3d |
⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
21 |
|
mulcl |
⊢ ( ( ; 1 2 ∈ ℂ ∧ 𝑅 ∈ ℂ ) → ( ; 1 2 · 𝑅 ) ∈ ℂ ) |
22 |
19 20 21
|
sylancr |
⊢ ( 𝜑 → ( ; 1 2 · 𝑅 ) ∈ ℂ ) |
23 |
15 22
|
addcld |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 2 ) + ( ; 1 2 · 𝑅 ) ) ∈ ℂ ) |
24 |
10 23
|
eqeltrd |
⊢ ( 𝜑 → 𝑈 ∈ ℂ ) |
25 |
|
2cn |
⊢ 2 ∈ ℂ |
26 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
27 |
|
expcl |
⊢ ( ( 𝑃 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝑃 ↑ 3 ) ∈ ℂ ) |
28 |
14 26 27
|
sylancl |
⊢ ( 𝜑 → ( 𝑃 ↑ 3 ) ∈ ℂ ) |
29 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ ( 𝑃 ↑ 3 ) ∈ ℂ ) → ( 2 · ( 𝑃 ↑ 3 ) ) ∈ ℂ ) |
30 |
25 28 29
|
sylancr |
⊢ ( 𝜑 → ( 2 · ( 𝑃 ↑ 3 ) ) ∈ ℂ ) |
31 |
30
|
negcld |
⊢ ( 𝜑 → - ( 2 · ( 𝑃 ↑ 3 ) ) ∈ ℂ ) |
32 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
33 |
|
7nn |
⊢ 7 ∈ ℕ |
34 |
32 33
|
decnncl |
⊢ ; 2 7 ∈ ℕ |
35 |
34
|
nncni |
⊢ ; 2 7 ∈ ℂ |
36 |
13
|
simp2d |
⊢ ( 𝜑 → 𝑄 ∈ ℂ ) |
37 |
36
|
sqcld |
⊢ ( 𝜑 → ( 𝑄 ↑ 2 ) ∈ ℂ ) |
38 |
|
mulcl |
⊢ ( ( ; 2 7 ∈ ℂ ∧ ( 𝑄 ↑ 2 ) ∈ ℂ ) → ( ; 2 7 · ( 𝑄 ↑ 2 ) ) ∈ ℂ ) |
39 |
35 37 38
|
sylancr |
⊢ ( 𝜑 → ( ; 2 7 · ( 𝑄 ↑ 2 ) ) ∈ ℂ ) |
40 |
31 39
|
subcld |
⊢ ( 𝜑 → ( - ( 2 · ( 𝑃 ↑ 3 ) ) − ( ; 2 7 · ( 𝑄 ↑ 2 ) ) ) ∈ ℂ ) |
41 |
|
7nn0 |
⊢ 7 ∈ ℕ0 |
42 |
41 17
|
decnncl |
⊢ ; 7 2 ∈ ℕ |
43 |
42
|
nncni |
⊢ ; 7 2 ∈ ℂ |
44 |
14 20
|
mulcld |
⊢ ( 𝜑 → ( 𝑃 · 𝑅 ) ∈ ℂ ) |
45 |
|
mulcl |
⊢ ( ( ; 7 2 ∈ ℂ ∧ ( 𝑃 · 𝑅 ) ∈ ℂ ) → ( ; 7 2 · ( 𝑃 · 𝑅 ) ) ∈ ℂ ) |
46 |
43 44 45
|
sylancr |
⊢ ( 𝜑 → ( ; 7 2 · ( 𝑃 · 𝑅 ) ) ∈ ℂ ) |
47 |
40 46
|
addcld |
⊢ ( 𝜑 → ( ( - ( 2 · ( 𝑃 ↑ 3 ) ) − ( ; 2 7 · ( 𝑄 ↑ 2 ) ) ) + ( ; 7 2 · ( 𝑃 · 𝑅 ) ) ) ∈ ℂ ) |
48 |
11 47
|
eqeltrd |
⊢ ( 𝜑 → 𝑉 ∈ ℂ ) |
49 |
48
|
sqcld |
⊢ ( 𝜑 → ( 𝑉 ↑ 2 ) ∈ ℂ ) |
50 |
|
4cn |
⊢ 4 ∈ ℂ |
51 |
|
expcl |
⊢ ( ( 𝑈 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝑈 ↑ 3 ) ∈ ℂ ) |
52 |
24 26 51
|
sylancl |
⊢ ( 𝜑 → ( 𝑈 ↑ 3 ) ∈ ℂ ) |
53 |
|
mulcl |
⊢ ( ( 4 ∈ ℂ ∧ ( 𝑈 ↑ 3 ) ∈ ℂ ) → ( 4 · ( 𝑈 ↑ 3 ) ) ∈ ℂ ) |
54 |
50 52 53
|
sylancr |
⊢ ( 𝜑 → ( 4 · ( 𝑈 ↑ 3 ) ) ∈ ℂ ) |
55 |
49 54
|
subcld |
⊢ ( 𝜑 → ( ( 𝑉 ↑ 2 ) − ( 4 · ( 𝑈 ↑ 3 ) ) ) ∈ ℂ ) |
56 |
55
|
sqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( ( 𝑉 ↑ 2 ) − ( 4 · ( 𝑈 ↑ 3 ) ) ) ) ∈ ℂ ) |
57 |
12 56
|
eqeltrd |
⊢ ( 𝜑 → 𝑊 ∈ ℂ ) |
58 |
24 48 57
|
3jca |
⊢ ( 𝜑 → ( 𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ ) ) |