| Step |
Hyp |
Ref |
Expression |
| 1 |
|
quart.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 2 |
|
quart.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 3 |
|
quart.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 4 |
|
quart.d |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 5 |
|
quart.x |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 6 |
|
quart.e |
⊢ ( 𝜑 → 𝐸 = - ( 𝐴 / 4 ) ) |
| 7 |
|
quart.p |
⊢ ( 𝜑 → 𝑃 = ( 𝐵 − ( ( 3 / 8 ) · ( 𝐴 ↑ 2 ) ) ) ) |
| 8 |
|
quart.q |
⊢ ( 𝜑 → 𝑄 = ( ( 𝐶 − ( ( 𝐴 · 𝐵 ) / 2 ) ) + ( ( 𝐴 ↑ 3 ) / 8 ) ) ) |
| 9 |
|
quart.r |
⊢ ( 𝜑 → 𝑅 = ( ( 𝐷 − ( ( 𝐶 · 𝐴 ) / 4 ) ) + ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) − ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) ) ) |
| 10 |
|
quart.u |
⊢ ( 𝜑 → 𝑈 = ( ( 𝑃 ↑ 2 ) + ( ; 1 2 · 𝑅 ) ) ) |
| 11 |
|
quart.v |
⊢ ( 𝜑 → 𝑉 = ( ( - ( 2 · ( 𝑃 ↑ 3 ) ) − ( ; 2 7 · ( 𝑄 ↑ 2 ) ) ) + ( ; 7 2 · ( 𝑃 · 𝑅 ) ) ) ) |
| 12 |
|
quart.w |
⊢ ( 𝜑 → 𝑊 = ( √ ‘ ( ( 𝑉 ↑ 2 ) − ( 4 · ( 𝑈 ↑ 3 ) ) ) ) ) |
| 13 |
1 2 3 4 7 8 9
|
quart1cl |
⊢ ( 𝜑 → ( 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ ) ) |
| 14 |
13
|
simp1d |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 15 |
14
|
sqcld |
⊢ ( 𝜑 → ( 𝑃 ↑ 2 ) ∈ ℂ ) |
| 16 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 17 |
|
2nn |
⊢ 2 ∈ ℕ |
| 18 |
16 17
|
decnncl |
⊢ ; 1 2 ∈ ℕ |
| 19 |
18
|
nncni |
⊢ ; 1 2 ∈ ℂ |
| 20 |
13
|
simp3d |
⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
| 21 |
|
mulcl |
⊢ ( ( ; 1 2 ∈ ℂ ∧ 𝑅 ∈ ℂ ) → ( ; 1 2 · 𝑅 ) ∈ ℂ ) |
| 22 |
19 20 21
|
sylancr |
⊢ ( 𝜑 → ( ; 1 2 · 𝑅 ) ∈ ℂ ) |
| 23 |
15 22
|
addcld |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 2 ) + ( ; 1 2 · 𝑅 ) ) ∈ ℂ ) |
| 24 |
10 23
|
eqeltrd |
⊢ ( 𝜑 → 𝑈 ∈ ℂ ) |
| 25 |
|
2cn |
⊢ 2 ∈ ℂ |
| 26 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 27 |
|
expcl |
⊢ ( ( 𝑃 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝑃 ↑ 3 ) ∈ ℂ ) |
| 28 |
14 26 27
|
sylancl |
⊢ ( 𝜑 → ( 𝑃 ↑ 3 ) ∈ ℂ ) |
| 29 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ ( 𝑃 ↑ 3 ) ∈ ℂ ) → ( 2 · ( 𝑃 ↑ 3 ) ) ∈ ℂ ) |
| 30 |
25 28 29
|
sylancr |
⊢ ( 𝜑 → ( 2 · ( 𝑃 ↑ 3 ) ) ∈ ℂ ) |
| 31 |
30
|
negcld |
⊢ ( 𝜑 → - ( 2 · ( 𝑃 ↑ 3 ) ) ∈ ℂ ) |
| 32 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 33 |
|
7nn |
⊢ 7 ∈ ℕ |
| 34 |
32 33
|
decnncl |
⊢ ; 2 7 ∈ ℕ |
| 35 |
34
|
nncni |
⊢ ; 2 7 ∈ ℂ |
| 36 |
13
|
simp2d |
⊢ ( 𝜑 → 𝑄 ∈ ℂ ) |
| 37 |
36
|
sqcld |
⊢ ( 𝜑 → ( 𝑄 ↑ 2 ) ∈ ℂ ) |
| 38 |
|
mulcl |
⊢ ( ( ; 2 7 ∈ ℂ ∧ ( 𝑄 ↑ 2 ) ∈ ℂ ) → ( ; 2 7 · ( 𝑄 ↑ 2 ) ) ∈ ℂ ) |
| 39 |
35 37 38
|
sylancr |
⊢ ( 𝜑 → ( ; 2 7 · ( 𝑄 ↑ 2 ) ) ∈ ℂ ) |
| 40 |
31 39
|
subcld |
⊢ ( 𝜑 → ( - ( 2 · ( 𝑃 ↑ 3 ) ) − ( ; 2 7 · ( 𝑄 ↑ 2 ) ) ) ∈ ℂ ) |
| 41 |
|
7nn0 |
⊢ 7 ∈ ℕ0 |
| 42 |
41 17
|
decnncl |
⊢ ; 7 2 ∈ ℕ |
| 43 |
42
|
nncni |
⊢ ; 7 2 ∈ ℂ |
| 44 |
14 20
|
mulcld |
⊢ ( 𝜑 → ( 𝑃 · 𝑅 ) ∈ ℂ ) |
| 45 |
|
mulcl |
⊢ ( ( ; 7 2 ∈ ℂ ∧ ( 𝑃 · 𝑅 ) ∈ ℂ ) → ( ; 7 2 · ( 𝑃 · 𝑅 ) ) ∈ ℂ ) |
| 46 |
43 44 45
|
sylancr |
⊢ ( 𝜑 → ( ; 7 2 · ( 𝑃 · 𝑅 ) ) ∈ ℂ ) |
| 47 |
40 46
|
addcld |
⊢ ( 𝜑 → ( ( - ( 2 · ( 𝑃 ↑ 3 ) ) − ( ; 2 7 · ( 𝑄 ↑ 2 ) ) ) + ( ; 7 2 · ( 𝑃 · 𝑅 ) ) ) ∈ ℂ ) |
| 48 |
11 47
|
eqeltrd |
⊢ ( 𝜑 → 𝑉 ∈ ℂ ) |
| 49 |
48
|
sqcld |
⊢ ( 𝜑 → ( 𝑉 ↑ 2 ) ∈ ℂ ) |
| 50 |
|
4cn |
⊢ 4 ∈ ℂ |
| 51 |
|
expcl |
⊢ ( ( 𝑈 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝑈 ↑ 3 ) ∈ ℂ ) |
| 52 |
24 26 51
|
sylancl |
⊢ ( 𝜑 → ( 𝑈 ↑ 3 ) ∈ ℂ ) |
| 53 |
|
mulcl |
⊢ ( ( 4 ∈ ℂ ∧ ( 𝑈 ↑ 3 ) ∈ ℂ ) → ( 4 · ( 𝑈 ↑ 3 ) ) ∈ ℂ ) |
| 54 |
50 52 53
|
sylancr |
⊢ ( 𝜑 → ( 4 · ( 𝑈 ↑ 3 ) ) ∈ ℂ ) |
| 55 |
49 54
|
subcld |
⊢ ( 𝜑 → ( ( 𝑉 ↑ 2 ) − ( 4 · ( 𝑈 ↑ 3 ) ) ) ∈ ℂ ) |
| 56 |
55
|
sqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( ( 𝑉 ↑ 2 ) − ( 4 · ( 𝑈 ↑ 3 ) ) ) ) ∈ ℂ ) |
| 57 |
12 56
|
eqeltrd |
⊢ ( 𝜑 → 𝑊 ∈ ℂ ) |
| 58 |
24 48 57
|
3jca |
⊢ ( 𝜑 → ( 𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ ) ) |