Metamath Proof Explorer


Theorem quartlem2

Description: Closure lemmas for quart . (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Hypotheses quart.a ( 𝜑𝐴 ∈ ℂ )
quart.b ( 𝜑𝐵 ∈ ℂ )
quart.c ( 𝜑𝐶 ∈ ℂ )
quart.d ( 𝜑𝐷 ∈ ℂ )
quart.x ( 𝜑𝑋 ∈ ℂ )
quart.e ( 𝜑𝐸 = - ( 𝐴 / 4 ) )
quart.p ( 𝜑𝑃 = ( 𝐵 − ( ( 3 / 8 ) · ( 𝐴 ↑ 2 ) ) ) )
quart.q ( 𝜑𝑄 = ( ( 𝐶 − ( ( 𝐴 · 𝐵 ) / 2 ) ) + ( ( 𝐴 ↑ 3 ) / 8 ) ) )
quart.r ( 𝜑𝑅 = ( ( 𝐷 − ( ( 𝐶 · 𝐴 ) / 4 ) ) + ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 1 6 ) − ( ( 3 / 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) ) )
quart.u ( 𝜑𝑈 = ( ( 𝑃 ↑ 2 ) + ( 1 2 · 𝑅 ) ) )
quart.v ( 𝜑𝑉 = ( ( - ( 2 · ( 𝑃 ↑ 3 ) ) − ( 2 7 · ( 𝑄 ↑ 2 ) ) ) + ( 7 2 · ( 𝑃 · 𝑅 ) ) ) )
quart.w ( 𝜑𝑊 = ( √ ‘ ( ( 𝑉 ↑ 2 ) − ( 4 · ( 𝑈 ↑ 3 ) ) ) ) )
Assertion quartlem2 ( 𝜑 → ( 𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ ) )

Proof

Step Hyp Ref Expression
1 quart.a ( 𝜑𝐴 ∈ ℂ )
2 quart.b ( 𝜑𝐵 ∈ ℂ )
3 quart.c ( 𝜑𝐶 ∈ ℂ )
4 quart.d ( 𝜑𝐷 ∈ ℂ )
5 quart.x ( 𝜑𝑋 ∈ ℂ )
6 quart.e ( 𝜑𝐸 = - ( 𝐴 / 4 ) )
7 quart.p ( 𝜑𝑃 = ( 𝐵 − ( ( 3 / 8 ) · ( 𝐴 ↑ 2 ) ) ) )
8 quart.q ( 𝜑𝑄 = ( ( 𝐶 − ( ( 𝐴 · 𝐵 ) / 2 ) ) + ( ( 𝐴 ↑ 3 ) / 8 ) ) )
9 quart.r ( 𝜑𝑅 = ( ( 𝐷 − ( ( 𝐶 · 𝐴 ) / 4 ) ) + ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / 1 6 ) − ( ( 3 / 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) ) )
10 quart.u ( 𝜑𝑈 = ( ( 𝑃 ↑ 2 ) + ( 1 2 · 𝑅 ) ) )
11 quart.v ( 𝜑𝑉 = ( ( - ( 2 · ( 𝑃 ↑ 3 ) ) − ( 2 7 · ( 𝑄 ↑ 2 ) ) ) + ( 7 2 · ( 𝑃 · 𝑅 ) ) ) )
12 quart.w ( 𝜑𝑊 = ( √ ‘ ( ( 𝑉 ↑ 2 ) − ( 4 · ( 𝑈 ↑ 3 ) ) ) ) )
13 1 2 3 4 7 8 9 quart1cl ( 𝜑 → ( 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ ) )
14 13 simp1d ( 𝜑𝑃 ∈ ℂ )
15 14 sqcld ( 𝜑 → ( 𝑃 ↑ 2 ) ∈ ℂ )
16 1nn0 1 ∈ ℕ0
17 2nn 2 ∈ ℕ
18 16 17 decnncl 1 2 ∈ ℕ
19 18 nncni 1 2 ∈ ℂ
20 13 simp3d ( 𝜑𝑅 ∈ ℂ )
21 mulcl ( ( 1 2 ∈ ℂ ∧ 𝑅 ∈ ℂ ) → ( 1 2 · 𝑅 ) ∈ ℂ )
22 19 20 21 sylancr ( 𝜑 → ( 1 2 · 𝑅 ) ∈ ℂ )
23 15 22 addcld ( 𝜑 → ( ( 𝑃 ↑ 2 ) + ( 1 2 · 𝑅 ) ) ∈ ℂ )
24 10 23 eqeltrd ( 𝜑𝑈 ∈ ℂ )
25 2cn 2 ∈ ℂ
26 3nn0 3 ∈ ℕ0
27 expcl ( ( 𝑃 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝑃 ↑ 3 ) ∈ ℂ )
28 14 26 27 sylancl ( 𝜑 → ( 𝑃 ↑ 3 ) ∈ ℂ )
29 mulcl ( ( 2 ∈ ℂ ∧ ( 𝑃 ↑ 3 ) ∈ ℂ ) → ( 2 · ( 𝑃 ↑ 3 ) ) ∈ ℂ )
30 25 28 29 sylancr ( 𝜑 → ( 2 · ( 𝑃 ↑ 3 ) ) ∈ ℂ )
31 30 negcld ( 𝜑 → - ( 2 · ( 𝑃 ↑ 3 ) ) ∈ ℂ )
32 2nn0 2 ∈ ℕ0
33 7nn 7 ∈ ℕ
34 32 33 decnncl 2 7 ∈ ℕ
35 34 nncni 2 7 ∈ ℂ
36 13 simp2d ( 𝜑𝑄 ∈ ℂ )
37 36 sqcld ( 𝜑 → ( 𝑄 ↑ 2 ) ∈ ℂ )
38 mulcl ( ( 2 7 ∈ ℂ ∧ ( 𝑄 ↑ 2 ) ∈ ℂ ) → ( 2 7 · ( 𝑄 ↑ 2 ) ) ∈ ℂ )
39 35 37 38 sylancr ( 𝜑 → ( 2 7 · ( 𝑄 ↑ 2 ) ) ∈ ℂ )
40 31 39 subcld ( 𝜑 → ( - ( 2 · ( 𝑃 ↑ 3 ) ) − ( 2 7 · ( 𝑄 ↑ 2 ) ) ) ∈ ℂ )
41 7nn0 7 ∈ ℕ0
42 41 17 decnncl 7 2 ∈ ℕ
43 42 nncni 7 2 ∈ ℂ
44 14 20 mulcld ( 𝜑 → ( 𝑃 · 𝑅 ) ∈ ℂ )
45 mulcl ( ( 7 2 ∈ ℂ ∧ ( 𝑃 · 𝑅 ) ∈ ℂ ) → ( 7 2 · ( 𝑃 · 𝑅 ) ) ∈ ℂ )
46 43 44 45 sylancr ( 𝜑 → ( 7 2 · ( 𝑃 · 𝑅 ) ) ∈ ℂ )
47 40 46 addcld ( 𝜑 → ( ( - ( 2 · ( 𝑃 ↑ 3 ) ) − ( 2 7 · ( 𝑄 ↑ 2 ) ) ) + ( 7 2 · ( 𝑃 · 𝑅 ) ) ) ∈ ℂ )
48 11 47 eqeltrd ( 𝜑𝑉 ∈ ℂ )
49 48 sqcld ( 𝜑 → ( 𝑉 ↑ 2 ) ∈ ℂ )
50 4cn 4 ∈ ℂ
51 expcl ( ( 𝑈 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝑈 ↑ 3 ) ∈ ℂ )
52 24 26 51 sylancl ( 𝜑 → ( 𝑈 ↑ 3 ) ∈ ℂ )
53 mulcl ( ( 4 ∈ ℂ ∧ ( 𝑈 ↑ 3 ) ∈ ℂ ) → ( 4 · ( 𝑈 ↑ 3 ) ) ∈ ℂ )
54 50 52 53 sylancr ( 𝜑 → ( 4 · ( 𝑈 ↑ 3 ) ) ∈ ℂ )
55 49 54 subcld ( 𝜑 → ( ( 𝑉 ↑ 2 ) − ( 4 · ( 𝑈 ↑ 3 ) ) ) ∈ ℂ )
56 55 sqrtcld ( 𝜑 → ( √ ‘ ( ( 𝑉 ↑ 2 ) − ( 4 · ( 𝑈 ↑ 3 ) ) ) ) ∈ ℂ )
57 12 56 eqeltrd ( 𝜑𝑊 ∈ ℂ )
58 24 48 57 3jca ( 𝜑 → ( 𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ ) )