Step |
Hyp |
Ref |
Expression |
1 |
|
quart.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
quart.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
3 |
|
quart.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
4 |
|
quart.d |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
5 |
|
quart.x |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
6 |
|
quart.e |
⊢ ( 𝜑 → 𝐸 = - ( 𝐴 / 4 ) ) |
7 |
|
quart.p |
⊢ ( 𝜑 → 𝑃 = ( 𝐵 − ( ( 3 / 8 ) · ( 𝐴 ↑ 2 ) ) ) ) |
8 |
|
quart.q |
⊢ ( 𝜑 → 𝑄 = ( ( 𝐶 − ( ( 𝐴 · 𝐵 ) / 2 ) ) + ( ( 𝐴 ↑ 3 ) / 8 ) ) ) |
9 |
|
quart.r |
⊢ ( 𝜑 → 𝑅 = ( ( 𝐷 − ( ( 𝐶 · 𝐴 ) / 4 ) ) + ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) − ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) ) ) |
10 |
|
quart.u |
⊢ ( 𝜑 → 𝑈 = ( ( 𝑃 ↑ 2 ) + ( ; 1 2 · 𝑅 ) ) ) |
11 |
|
quart.v |
⊢ ( 𝜑 → 𝑉 = ( ( - ( 2 · ( 𝑃 ↑ 3 ) ) − ( ; 2 7 · ( 𝑄 ↑ 2 ) ) ) + ( ; 7 2 · ( 𝑃 · 𝑅 ) ) ) ) |
12 |
|
quart.w |
⊢ ( 𝜑 → 𝑊 = ( √ ‘ ( ( 𝑉 ↑ 2 ) − ( 4 · ( 𝑈 ↑ 3 ) ) ) ) ) |
13 |
|
quart.s |
⊢ ( 𝜑 → 𝑆 = ( ( √ ‘ 𝑀 ) / 2 ) ) |
14 |
|
quart.m |
⊢ ( 𝜑 → 𝑀 = - ( ( ( ( 2 · 𝑃 ) + 𝑇 ) + ( 𝑈 / 𝑇 ) ) / 3 ) ) |
15 |
|
quart.t |
⊢ ( 𝜑 → 𝑇 = ( ( ( 𝑉 + 𝑊 ) / 2 ) ↑𝑐 ( 1 / 3 ) ) ) |
16 |
|
quart.t0 |
⊢ ( 𝜑 → 𝑇 ≠ 0 ) |
17 |
|
2cn |
⊢ 2 ∈ ℂ |
18 |
1 2 3 4 7 8 9
|
quart1cl |
⊢ ( 𝜑 → ( 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ ) ) |
19 |
18
|
simp1d |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
20 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ 𝑃 ∈ ℂ ) → ( 2 · 𝑃 ) ∈ ℂ ) |
21 |
17 19 20
|
sylancr |
⊢ ( 𝜑 → ( 2 · 𝑃 ) ∈ ℂ ) |
22 |
1 2 3 4 1 6 7 8 9 10 11 12
|
quartlem2 |
⊢ ( 𝜑 → ( 𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ ) ) |
23 |
22
|
simp2d |
⊢ ( 𝜑 → 𝑉 ∈ ℂ ) |
24 |
22
|
simp3d |
⊢ ( 𝜑 → 𝑊 ∈ ℂ ) |
25 |
23 24
|
addcld |
⊢ ( 𝜑 → ( 𝑉 + 𝑊 ) ∈ ℂ ) |
26 |
25
|
halfcld |
⊢ ( 𝜑 → ( ( 𝑉 + 𝑊 ) / 2 ) ∈ ℂ ) |
27 |
|
3nn |
⊢ 3 ∈ ℕ |
28 |
|
nnrecre |
⊢ ( 3 ∈ ℕ → ( 1 / 3 ) ∈ ℝ ) |
29 |
27 28
|
ax-mp |
⊢ ( 1 / 3 ) ∈ ℝ |
30 |
29
|
recni |
⊢ ( 1 / 3 ) ∈ ℂ |
31 |
|
cxpcl |
⊢ ( ( ( ( 𝑉 + 𝑊 ) / 2 ) ∈ ℂ ∧ ( 1 / 3 ) ∈ ℂ ) → ( ( ( 𝑉 + 𝑊 ) / 2 ) ↑𝑐 ( 1 / 3 ) ) ∈ ℂ ) |
32 |
26 30 31
|
sylancl |
⊢ ( 𝜑 → ( ( ( 𝑉 + 𝑊 ) / 2 ) ↑𝑐 ( 1 / 3 ) ) ∈ ℂ ) |
33 |
15 32
|
eqeltrd |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
34 |
21 33
|
addcld |
⊢ ( 𝜑 → ( ( 2 · 𝑃 ) + 𝑇 ) ∈ ℂ ) |
35 |
22
|
simp1d |
⊢ ( 𝜑 → 𝑈 ∈ ℂ ) |
36 |
35 33 16
|
divcld |
⊢ ( 𝜑 → ( 𝑈 / 𝑇 ) ∈ ℂ ) |
37 |
34 36
|
addcld |
⊢ ( 𝜑 → ( ( ( 2 · 𝑃 ) + 𝑇 ) + ( 𝑈 / 𝑇 ) ) ∈ ℂ ) |
38 |
|
3cn |
⊢ 3 ∈ ℂ |
39 |
38
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℂ ) |
40 |
|
3ne0 |
⊢ 3 ≠ 0 |
41 |
40
|
a1i |
⊢ ( 𝜑 → 3 ≠ 0 ) |
42 |
37 39 41
|
divcld |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑃 ) + 𝑇 ) + ( 𝑈 / 𝑇 ) ) / 3 ) ∈ ℂ ) |
43 |
42
|
negcld |
⊢ ( 𝜑 → - ( ( ( ( 2 · 𝑃 ) + 𝑇 ) + ( 𝑈 / 𝑇 ) ) / 3 ) ∈ ℂ ) |
44 |
14 43
|
eqeltrd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
45 |
44
|
sqrtcld |
⊢ ( 𝜑 → ( √ ‘ 𝑀 ) ∈ ℂ ) |
46 |
45
|
halfcld |
⊢ ( 𝜑 → ( ( √ ‘ 𝑀 ) / 2 ) ∈ ℂ ) |
47 |
13 46
|
eqeltrd |
⊢ ( 𝜑 → 𝑆 ∈ ℂ ) |
48 |
47 44 33
|
3jca |
⊢ ( 𝜑 → ( 𝑆 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑇 ∈ ℂ ) ) |