Step |
Hyp |
Ref |
Expression |
1 |
|
plydiv.pl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
2 |
|
plydiv.tm |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑆 ) |
3 |
|
plydiv.rc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0 ) ) → ( 1 / 𝑥 ) ∈ 𝑆 ) |
4 |
|
plydiv.m1 |
⊢ ( 𝜑 → - 1 ∈ 𝑆 ) |
5 |
|
plydiv.f |
⊢ ( 𝜑 → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
6 |
|
plydiv.g |
⊢ ( 𝜑 → 𝐺 ∈ ( Poly ‘ 𝑆 ) ) |
7 |
|
plydiv.z |
⊢ ( 𝜑 → 𝐺 ≠ 0𝑝 ) |
8 |
|
eqid |
⊢ ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ) = ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ) |
9 |
1 2 3 4 5 6 7 8
|
quotlem |
⊢ ( 𝜑 → ( ( 𝐹 quot 𝐺 ) ∈ ( Poly ‘ 𝑆 ) ∧ ( ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ) = 0𝑝 ∨ ( deg ‘ ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ) ) < ( deg ‘ 𝐺 ) ) ) ) |
10 |
9
|
simpld |
⊢ ( 𝜑 → ( 𝐹 quot 𝐺 ) ∈ ( Poly ‘ 𝑆 ) ) |