| Step | Hyp | Ref | Expression | 
						
							| 1 |  | quotdgr.1 | ⊢ 𝑅  =  ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) ) ) | 
						
							| 2 |  | addcl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑥  +  𝑦 )  ∈  ℂ ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ≠  0𝑝 )  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ ) )  →  ( 𝑥  +  𝑦 )  ∈  ℂ ) | 
						
							| 4 |  | mulcl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑥  ·  𝑦 )  ∈  ℂ ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ≠  0𝑝 )  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ ) )  →  ( 𝑥  ·  𝑦 )  ∈  ℂ ) | 
						
							| 6 |  | reccl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 )  →  ( 1  /  𝑥 )  ∈  ℂ ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ≠  0𝑝 )  ∧  ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 ) )  →  ( 1  /  𝑥 )  ∈  ℂ ) | 
						
							| 8 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 9 | 8 | a1i | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ≠  0𝑝 )  →  - 1  ∈  ℂ ) | 
						
							| 10 |  | plyssc | ⊢ ( Poly ‘ 𝑆 )  ⊆  ( Poly ‘ ℂ ) | 
						
							| 11 |  | simp1 | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ≠  0𝑝 )  →  𝐹  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 12 | 10 11 | sselid | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ≠  0𝑝 )  →  𝐹  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 13 |  | simp2 | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ≠  0𝑝 )  →  𝐺  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 14 | 10 13 | sselid | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ≠  0𝑝 )  →  𝐺  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 15 |  | simp3 | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ≠  0𝑝 )  →  𝐺  ≠  0𝑝 ) | 
						
							| 16 | 3 5 7 9 12 14 15 1 | quotlem | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ≠  0𝑝 )  →  ( ( 𝐹  quot  𝐺 )  ∈  ( Poly ‘ ℂ )  ∧  ( 𝑅  =  0𝑝  ∨  ( deg ‘ 𝑅 )  <  ( deg ‘ 𝐺 ) ) ) ) | 
						
							| 17 | 16 | simprd | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ≠  0𝑝 )  →  ( 𝑅  =  0𝑝  ∨  ( deg ‘ 𝑅 )  <  ( deg ‘ 𝐺 ) ) ) |