Metamath Proof Explorer


Theorem quotdgr

Description: Remainder property of the quotient function. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Hypothesis quotdgr.1 𝑅 = ( 𝐹f − ( 𝐺f · ( 𝐹 quot 𝐺 ) ) )
Assertion quotdgr ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( 𝑅 = 0𝑝 ∨ ( deg ‘ 𝑅 ) < ( deg ‘ 𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 quotdgr.1 𝑅 = ( 𝐹f − ( 𝐺f · ( 𝐹 quot 𝐺 ) ) )
2 addcl ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ )
3 2 adantl ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 + 𝑦 ) ∈ ℂ )
4 mulcl ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ )
5 4 adantl ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 · 𝑦 ) ∈ ℂ )
6 reccl ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → ( 1 / 𝑥 ) ∈ ℂ )
7 6 adantl ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) → ( 1 / 𝑥 ) ∈ ℂ )
8 neg1cn - 1 ∈ ℂ
9 8 a1i ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → - 1 ∈ ℂ )
10 plyssc ( Poly ‘ 𝑆 ) ⊆ ( Poly ‘ ℂ )
11 simp1 ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → 𝐹 ∈ ( Poly ‘ 𝑆 ) )
12 10 11 sselid ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → 𝐹 ∈ ( Poly ‘ ℂ ) )
13 simp2 ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → 𝐺 ∈ ( Poly ‘ 𝑆 ) )
14 10 13 sselid ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → 𝐺 ∈ ( Poly ‘ ℂ ) )
15 simp3 ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → 𝐺 ≠ 0𝑝 )
16 3 5 7 9 12 14 15 1 quotlem ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( ( 𝐹 quot 𝐺 ) ∈ ( Poly ‘ ℂ ) ∧ ( 𝑅 = 0𝑝 ∨ ( deg ‘ 𝑅 ) < ( deg ‘ 𝐺 ) ) ) )
17 16 simprd ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( 𝑅 = 0𝑝 ∨ ( deg ‘ 𝑅 ) < ( deg ‘ 𝐺 ) ) )