Step |
Hyp |
Ref |
Expression |
1 |
|
quotval.1 |
⊢ 𝑅 = ( 𝐹 ∘f − ( 𝐺 ∘f · 𝑞 ) ) |
2 |
|
plyssc |
⊢ ( Poly ‘ 𝑆 ) ⊆ ( Poly ‘ ℂ ) |
3 |
2
|
sseli |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 ∈ ( Poly ‘ ℂ ) ) |
4 |
2
|
sseli |
⊢ ( 𝐺 ∈ ( Poly ‘ 𝑆 ) → 𝐺 ∈ ( Poly ‘ ℂ ) ) |
5 |
|
eldifsn |
⊢ ( 𝐺 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ↔ ( 𝐺 ∈ ( Poly ‘ ℂ ) ∧ 𝐺 ≠ 0𝑝 ) ) |
6 |
|
oveq1 |
⊢ ( 𝑔 = 𝐺 → ( 𝑔 ∘f · 𝑞 ) = ( 𝐺 ∘f · 𝑞 ) ) |
7 |
|
oveq12 |
⊢ ( ( 𝑓 = 𝐹 ∧ ( 𝑔 ∘f · 𝑞 ) = ( 𝐺 ∘f · 𝑞 ) ) → ( 𝑓 ∘f − ( 𝑔 ∘f · 𝑞 ) ) = ( 𝐹 ∘f − ( 𝐺 ∘f · 𝑞 ) ) ) |
8 |
6 7
|
sylan2 |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑓 ∘f − ( 𝑔 ∘f · 𝑞 ) ) = ( 𝐹 ∘f − ( 𝐺 ∘f · 𝑞 ) ) ) |
9 |
8 1
|
eqtr4di |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑓 ∘f − ( 𝑔 ∘f · 𝑞 ) ) = 𝑅 ) |
10 |
9
|
sbceq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( [ ( 𝑓 ∘f − ( 𝑔 ∘f · 𝑞 ) ) / 𝑟 ] ( 𝑟 = 0𝑝 ∨ ( deg ‘ 𝑟 ) < ( deg ‘ 𝑔 ) ) ↔ [ 𝑅 / 𝑟 ] ( 𝑟 = 0𝑝 ∨ ( deg ‘ 𝑟 ) < ( deg ‘ 𝑔 ) ) ) ) |
11 |
1
|
ovexi |
⊢ 𝑅 ∈ V |
12 |
|
eqeq1 |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 = 0𝑝 ↔ 𝑅 = 0𝑝 ) ) |
13 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( deg ‘ 𝑟 ) = ( deg ‘ 𝑅 ) ) |
14 |
13
|
breq1d |
⊢ ( 𝑟 = 𝑅 → ( ( deg ‘ 𝑟 ) < ( deg ‘ 𝑔 ) ↔ ( deg ‘ 𝑅 ) < ( deg ‘ 𝑔 ) ) ) |
15 |
12 14
|
orbi12d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑟 = 0𝑝 ∨ ( deg ‘ 𝑟 ) < ( deg ‘ 𝑔 ) ) ↔ ( 𝑅 = 0𝑝 ∨ ( deg ‘ 𝑅 ) < ( deg ‘ 𝑔 ) ) ) ) |
16 |
11 15
|
sbcie |
⊢ ( [ 𝑅 / 𝑟 ] ( 𝑟 = 0𝑝 ∨ ( deg ‘ 𝑟 ) < ( deg ‘ 𝑔 ) ) ↔ ( 𝑅 = 0𝑝 ∨ ( deg ‘ 𝑅 ) < ( deg ‘ 𝑔 ) ) ) |
17 |
|
simpr |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → 𝑔 = 𝐺 ) |
18 |
17
|
fveq2d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( deg ‘ 𝑔 ) = ( deg ‘ 𝐺 ) ) |
19 |
18
|
breq2d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( deg ‘ 𝑅 ) < ( deg ‘ 𝑔 ) ↔ ( deg ‘ 𝑅 ) < ( deg ‘ 𝐺 ) ) ) |
20 |
19
|
orbi2d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝑅 = 0𝑝 ∨ ( deg ‘ 𝑅 ) < ( deg ‘ 𝑔 ) ) ↔ ( 𝑅 = 0𝑝 ∨ ( deg ‘ 𝑅 ) < ( deg ‘ 𝐺 ) ) ) ) |
21 |
16 20
|
syl5bb |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( [ 𝑅 / 𝑟 ] ( 𝑟 = 0𝑝 ∨ ( deg ‘ 𝑟 ) < ( deg ‘ 𝑔 ) ) ↔ ( 𝑅 = 0𝑝 ∨ ( deg ‘ 𝑅 ) < ( deg ‘ 𝐺 ) ) ) ) |
22 |
10 21
|
bitrd |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( [ ( 𝑓 ∘f − ( 𝑔 ∘f · 𝑞 ) ) / 𝑟 ] ( 𝑟 = 0𝑝 ∨ ( deg ‘ 𝑟 ) < ( deg ‘ 𝑔 ) ) ↔ ( 𝑅 = 0𝑝 ∨ ( deg ‘ 𝑅 ) < ( deg ‘ 𝐺 ) ) ) ) |
23 |
22
|
riotabidv |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ℩ 𝑞 ∈ ( Poly ‘ ℂ ) [ ( 𝑓 ∘f − ( 𝑔 ∘f · 𝑞 ) ) / 𝑟 ] ( 𝑟 = 0𝑝 ∨ ( deg ‘ 𝑟 ) < ( deg ‘ 𝑔 ) ) ) = ( ℩ 𝑞 ∈ ( Poly ‘ ℂ ) ( 𝑅 = 0𝑝 ∨ ( deg ‘ 𝑅 ) < ( deg ‘ 𝐺 ) ) ) ) |
24 |
|
df-quot |
⊢ quot = ( 𝑓 ∈ ( Poly ‘ ℂ ) , 𝑔 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ↦ ( ℩ 𝑞 ∈ ( Poly ‘ ℂ ) [ ( 𝑓 ∘f − ( 𝑔 ∘f · 𝑞 ) ) / 𝑟 ] ( 𝑟 = 0𝑝 ∨ ( deg ‘ 𝑟 ) < ( deg ‘ 𝑔 ) ) ) ) |
25 |
|
riotaex |
⊢ ( ℩ 𝑞 ∈ ( Poly ‘ ℂ ) ( 𝑅 = 0𝑝 ∨ ( deg ‘ 𝑅 ) < ( deg ‘ 𝐺 ) ) ) ∈ V |
26 |
23 24 25
|
ovmpoa |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℂ ) ∧ 𝐺 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ) → ( 𝐹 quot 𝐺 ) = ( ℩ 𝑞 ∈ ( Poly ‘ ℂ ) ( 𝑅 = 0𝑝 ∨ ( deg ‘ 𝑅 ) < ( deg ‘ 𝐺 ) ) ) ) |
27 |
5 26
|
sylan2br |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℂ ) ∧ ( 𝐺 ∈ ( Poly ‘ ℂ ) ∧ 𝐺 ≠ 0𝑝 ) ) → ( 𝐹 quot 𝐺 ) = ( ℩ 𝑞 ∈ ( Poly ‘ ℂ ) ( 𝑅 = 0𝑝 ∨ ( deg ‘ 𝑅 ) < ( deg ‘ 𝐺 ) ) ) ) |
28 |
27
|
3impb |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℂ ) ∧ 𝐺 ∈ ( Poly ‘ ℂ ) ∧ 𝐺 ≠ 0𝑝 ) → ( 𝐹 quot 𝐺 ) = ( ℩ 𝑞 ∈ ( Poly ‘ ℂ ) ( 𝑅 = 0𝑝 ∨ ( deg ‘ 𝑅 ) < ( deg ‘ 𝐺 ) ) ) ) |
29 |
4 28
|
syl3an2 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℂ ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( 𝐹 quot 𝐺 ) = ( ℩ 𝑞 ∈ ( Poly ‘ ℂ ) ( 𝑅 = 0𝑝 ∨ ( deg ‘ 𝑅 ) < ( deg ‘ 𝐺 ) ) ) ) |
30 |
3 29
|
syl3an1 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( 𝐹 quot 𝐺 ) = ( ℩ 𝑞 ∈ ( Poly ‘ ℂ ) ( 𝑅 = 0𝑝 ∨ ( deg ‘ 𝑅 ) < ( deg ‘ 𝐺 ) ) ) ) |