Step |
Hyp |
Ref |
Expression |
1 |
|
qusgrp.h |
⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) ) |
2 |
|
qus0.p |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
nsgsubg |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
4 |
|
subgrcl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
5 |
3 4
|
syl |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
7 |
6 2
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → 0 ∈ ( Base ‘ 𝐺 ) ) |
8 |
5 7
|
syl |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 0 ∈ ( Base ‘ 𝐺 ) ) |
9 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
10 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
11 |
1 6 9 10
|
qusadd |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 0 ∈ ( Base ‘ 𝐺 ) ∧ 0 ∈ ( Base ‘ 𝐺 ) ) → ( [ 0 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ 0 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 0 ( +g ‘ 𝐺 ) 0 ) ] ( 𝐺 ~QG 𝑆 ) ) |
12 |
8 8 11
|
mpd3an23 |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( [ 0 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ 0 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 0 ( +g ‘ 𝐺 ) 0 ) ] ( 𝐺 ~QG 𝑆 ) ) |
13 |
6 9 2
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 0 ∈ ( Base ‘ 𝐺 ) ) → ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) |
14 |
5 8 13
|
syl2anc |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) |
15 |
14
|
eceq1d |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → [ ( 0 ( +g ‘ 𝐺 ) 0 ) ] ( 𝐺 ~QG 𝑆 ) = [ 0 ] ( 𝐺 ~QG 𝑆 ) ) |
16 |
12 15
|
eqtrd |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( [ 0 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ 0 ] ( 𝐺 ~QG 𝑆 ) ) = [ 0 ] ( 𝐺 ~QG 𝑆 ) ) |
17 |
1
|
qusgrp |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
19 |
1 6 18
|
quseccl |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 0 ∈ ( Base ‘ 𝐺 ) ) → [ 0 ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ) |
20 |
8 19
|
mpdan |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → [ 0 ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ) |
21 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
22 |
18 10 21
|
grpid |
⊢ ( ( 𝐻 ∈ Grp ∧ [ 0 ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ) → ( ( [ 0 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ 0 ] ( 𝐺 ~QG 𝑆 ) ) = [ 0 ] ( 𝐺 ~QG 𝑆 ) ↔ ( 0g ‘ 𝐻 ) = [ 0 ] ( 𝐺 ~QG 𝑆 ) ) ) |
23 |
17 20 22
|
syl2anc |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( ( [ 0 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ 0 ] ( 𝐺 ~QG 𝑆 ) ) = [ 0 ] ( 𝐺 ~QG 𝑆 ) ↔ ( 0g ‘ 𝐻 ) = [ 0 ] ( 𝐺 ~QG 𝑆 ) ) ) |
24 |
16 23
|
mpbid |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( 0g ‘ 𝐻 ) = [ 0 ] ( 𝐺 ~QG 𝑆 ) ) |
25 |
24
|
eqcomd |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → [ 0 ] ( 𝐺 ~QG 𝑆 ) = ( 0g ‘ 𝐻 ) ) |