Step |
Hyp |
Ref |
Expression |
1 |
|
qus0subg.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
2 |
|
qus0subg.s |
⊢ 𝑆 = { 0 } |
3 |
|
qus0subg.e |
⊢ ∼ = ( 𝐺 ~QG 𝑆 ) |
4 |
|
qus0subg.u |
⊢ 𝑈 = ( 𝐺 /s ∼ ) |
5 |
|
qus0subg.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
6 |
4
|
a1i |
⊢ ( 𝐺 ∈ Grp → 𝑈 = ( 𝐺 /s ∼ ) ) |
7 |
5
|
a1i |
⊢ ( 𝐺 ∈ Grp → 𝐵 = ( Base ‘ 𝐺 ) ) |
8 |
1
|
0subg |
⊢ ( 𝐺 ∈ Grp → { 0 } ∈ ( SubGrp ‘ 𝐺 ) ) |
9 |
2 8
|
eqeltrid |
⊢ ( 𝐺 ∈ Grp → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
10 |
5 3
|
eqger |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ∼ Er 𝐵 ) |
11 |
9 10
|
syl |
⊢ ( 𝐺 ∈ Grp → ∼ Er 𝐵 ) |
12 |
|
id |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Grp ) |
13 |
1
|
0nsg |
⊢ ( 𝐺 ∈ Grp → { 0 } ∈ ( NrmSGrp ‘ 𝐺 ) ) |
14 |
2 13
|
eqeltrid |
⊢ ( 𝐺 ∈ Grp → 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
15 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
16 |
5 3 15
|
eqgcpbl |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( ( 𝑥 ∼ 𝑝 ∧ 𝑦 ∼ 𝑞 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∼ ( 𝑝 ( +g ‘ 𝐺 ) 𝑞 ) ) ) |
17 |
14 16
|
syl |
⊢ ( 𝐺 ∈ Grp → ( ( 𝑥 ∼ 𝑝 ∧ 𝑦 ∼ 𝑞 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∼ ( 𝑝 ( +g ‘ 𝐺 ) 𝑞 ) ) ) |
18 |
5 15
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) → ( 𝑝 ( +g ‘ 𝐺 ) 𝑞 ) ∈ 𝐵 ) |
19 |
18
|
3expb |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → ( 𝑝 ( +g ‘ 𝐺 ) 𝑞 ) ∈ 𝐵 ) |
20 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
21 |
6 7 11 12 17 19 15 20
|
qusaddval |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( [ 𝑎 ] ∼ ( +g ‘ 𝑈 ) [ 𝑏 ] ∼ ) = [ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ] ∼ ) |
22 |
21
|
3expb |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( [ 𝑎 ] ∼ ( +g ‘ 𝑈 ) [ 𝑏 ] ∼ ) = [ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ] ∼ ) |
23 |
1 2 5 3
|
eqg0subgecsn |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑎 ∈ 𝐵 ) → [ 𝑎 ] ∼ = { 𝑎 } ) |
24 |
23
|
adantrr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → [ 𝑎 ] ∼ = { 𝑎 } ) |
25 |
1 2 5 3
|
eqg0subgecsn |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑏 ∈ 𝐵 ) → [ 𝑏 ] ∼ = { 𝑏 } ) |
26 |
25
|
adantrl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → [ 𝑏 ] ∼ = { 𝑏 } ) |
27 |
24 26
|
oveq12d |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( [ 𝑎 ] ∼ ( +g ‘ 𝑈 ) [ 𝑏 ] ∼ ) = ( { 𝑎 } ( +g ‘ 𝑈 ) { 𝑏 } ) ) |
28 |
5 15
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ 𝐵 ) |
29 |
28
|
3expb |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ 𝐵 ) |
30 |
1 2 5 3
|
eqg0subgecsn |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ 𝐵 ) → [ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ] ∼ = { ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) } ) |
31 |
29 30
|
syldan |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → [ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ] ∼ = { ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) } ) |
32 |
22 27 31
|
3eqtr3d |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( { 𝑎 } ( +g ‘ 𝑈 ) { 𝑏 } ) = { ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) } ) |
33 |
32
|
ralrimivva |
⊢ ( 𝐺 ∈ Grp → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( { 𝑎 } ( +g ‘ 𝑈 ) { 𝑏 } ) = { ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) } ) |