Metamath Proof Explorer


Theorem qus0subgadd

Description: The addition in a quotient of a group by the trivial (zero) subgroup. (Contributed by AV, 26-Feb-2025)

Ref Expression
Hypotheses qus0subg.0 0 = ( 0g𝐺 )
qus0subg.s 𝑆 = { 0 }
qus0subg.e = ( 𝐺 ~QG 𝑆 )
qus0subg.u 𝑈 = ( 𝐺 /s )
qus0subg.b 𝐵 = ( Base ‘ 𝐺 )
Assertion qus0subgadd ( 𝐺 ∈ Grp → ∀ 𝑎𝐵𝑏𝐵 ( { 𝑎 } ( +g𝑈 ) { 𝑏 } ) = { ( 𝑎 ( +g𝐺 ) 𝑏 ) } )

Proof

Step Hyp Ref Expression
1 qus0subg.0 0 = ( 0g𝐺 )
2 qus0subg.s 𝑆 = { 0 }
3 qus0subg.e = ( 𝐺 ~QG 𝑆 )
4 qus0subg.u 𝑈 = ( 𝐺 /s )
5 qus0subg.b 𝐵 = ( Base ‘ 𝐺 )
6 4 a1i ( 𝐺 ∈ Grp → 𝑈 = ( 𝐺 /s ) )
7 5 a1i ( 𝐺 ∈ Grp → 𝐵 = ( Base ‘ 𝐺 ) )
8 1 0subg ( 𝐺 ∈ Grp → { 0 } ∈ ( SubGrp ‘ 𝐺 ) )
9 2 8 eqeltrid ( 𝐺 ∈ Grp → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) )
10 5 3 eqger ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → Er 𝐵 )
11 9 10 syl ( 𝐺 ∈ Grp → Er 𝐵 )
12 id ( 𝐺 ∈ Grp → 𝐺 ∈ Grp )
13 1 0nsg ( 𝐺 ∈ Grp → { 0 } ∈ ( NrmSGrp ‘ 𝐺 ) )
14 2 13 eqeltrid ( 𝐺 ∈ Grp → 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) )
15 eqid ( +g𝐺 ) = ( +g𝐺 )
16 5 3 15 eqgcpbl ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( ( 𝑥 𝑝𝑦 𝑞 ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) ( 𝑝 ( +g𝐺 ) 𝑞 ) ) )
17 14 16 syl ( 𝐺 ∈ Grp → ( ( 𝑥 𝑝𝑦 𝑞 ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) ( 𝑝 ( +g𝐺 ) 𝑞 ) ) )
18 5 15 grpcl ( ( 𝐺 ∈ Grp ∧ 𝑝𝐵𝑞𝐵 ) → ( 𝑝 ( +g𝐺 ) 𝑞 ) ∈ 𝐵 )
19 18 3expb ( ( 𝐺 ∈ Grp ∧ ( 𝑝𝐵𝑞𝐵 ) ) → ( 𝑝 ( +g𝐺 ) 𝑞 ) ∈ 𝐵 )
20 eqid ( +g𝑈 ) = ( +g𝑈 )
21 6 7 11 12 17 19 15 20 qusaddval ( ( 𝐺 ∈ Grp ∧ 𝑎𝐵𝑏𝐵 ) → ( [ 𝑎 ] ( +g𝑈 ) [ 𝑏 ] ) = [ ( 𝑎 ( +g𝐺 ) 𝑏 ) ] )
22 21 3expb ( ( 𝐺 ∈ Grp ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( [ 𝑎 ] ( +g𝑈 ) [ 𝑏 ] ) = [ ( 𝑎 ( +g𝐺 ) 𝑏 ) ] )
23 1 2 5 3 eqg0subgecsn ( ( 𝐺 ∈ Grp ∧ 𝑎𝐵 ) → [ 𝑎 ] = { 𝑎 } )
24 23 adantrr ( ( 𝐺 ∈ Grp ∧ ( 𝑎𝐵𝑏𝐵 ) ) → [ 𝑎 ] = { 𝑎 } )
25 1 2 5 3 eqg0subgecsn ( ( 𝐺 ∈ Grp ∧ 𝑏𝐵 ) → [ 𝑏 ] = { 𝑏 } )
26 25 adantrl ( ( 𝐺 ∈ Grp ∧ ( 𝑎𝐵𝑏𝐵 ) ) → [ 𝑏 ] = { 𝑏 } )
27 24 26 oveq12d ( ( 𝐺 ∈ Grp ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( [ 𝑎 ] ( +g𝑈 ) [ 𝑏 ] ) = ( { 𝑎 } ( +g𝑈 ) { 𝑏 } ) )
28 5 15 grpcl ( ( 𝐺 ∈ Grp ∧ 𝑎𝐵𝑏𝐵 ) → ( 𝑎 ( +g𝐺 ) 𝑏 ) ∈ 𝐵 )
29 28 3expb ( ( 𝐺 ∈ Grp ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( 𝑎 ( +g𝐺 ) 𝑏 ) ∈ 𝐵 )
30 1 2 5 3 eqg0subgecsn ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ( +g𝐺 ) 𝑏 ) ∈ 𝐵 ) → [ ( 𝑎 ( +g𝐺 ) 𝑏 ) ] = { ( 𝑎 ( +g𝐺 ) 𝑏 ) } )
31 29 30 syldan ( ( 𝐺 ∈ Grp ∧ ( 𝑎𝐵𝑏𝐵 ) ) → [ ( 𝑎 ( +g𝐺 ) 𝑏 ) ] = { ( 𝑎 ( +g𝐺 ) 𝑏 ) } )
32 22 27 31 3eqtr3d ( ( 𝐺 ∈ Grp ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( { 𝑎 } ( +g𝑈 ) { 𝑏 } ) = { ( 𝑎 ( +g𝐺 ) 𝑏 ) } )
33 32 ralrimivva ( 𝐺 ∈ Grp → ∀ 𝑎𝐵𝑏𝐵 ( { 𝑎 } ( +g𝑈 ) { 𝑏 } ) = { ( 𝑎 ( +g𝐺 ) 𝑏 ) } )