| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qus0subg.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 2 |
|
qus0subg.s |
⊢ 𝑆 = { 0 } |
| 3 |
|
qus0subg.e |
⊢ ∼ = ( 𝐺 ~QG 𝑆 ) |
| 4 |
|
qus0subg.u |
⊢ 𝑈 = ( 𝐺 /s ∼ ) |
| 5 |
|
qus0subg.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 6 |
|
df-qs |
⊢ ( 𝐵 / ∼ ) = { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = [ 𝑥 ] ∼ } |
| 7 |
4
|
a1i |
⊢ ( 𝐺 ∈ Grp → 𝑈 = ( 𝐺 /s ∼ ) ) |
| 8 |
5
|
a1i |
⊢ ( 𝐺 ∈ Grp → 𝐵 = ( Base ‘ 𝐺 ) ) |
| 9 |
3
|
ovexi |
⊢ ∼ ∈ V |
| 10 |
9
|
a1i |
⊢ ( 𝐺 ∈ Grp → ∼ ∈ V ) |
| 11 |
|
id |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Grp ) |
| 12 |
7 8 10 11
|
qusbas |
⊢ ( 𝐺 ∈ Grp → ( 𝐵 / ∼ ) = ( Base ‘ 𝑈 ) ) |
| 13 |
1 2 5 3
|
eqg0subgecsn |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → [ 𝑥 ] ∼ = { 𝑥 } ) |
| 14 |
13
|
eqeq2d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( 𝑢 = [ 𝑥 ] ∼ ↔ 𝑢 = { 𝑥 } ) ) |
| 15 |
14
|
rexbidva |
⊢ ( 𝐺 ∈ Grp → ( ∃ 𝑥 ∈ 𝐵 𝑢 = [ 𝑥 ] ∼ ↔ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } ) ) |
| 16 |
15
|
abbidv |
⊢ ( 𝐺 ∈ Grp → { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = [ 𝑥 ] ∼ } = { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) |
| 17 |
6 12 16
|
3eqtr3a |
⊢ ( 𝐺 ∈ Grp → ( Base ‘ 𝑈 ) = { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) |