Step |
Hyp |
Ref |
Expression |
1 |
|
qusring.u |
⊢ 𝑈 = ( 𝑅 /s ( 𝑅 ~QG 𝑆 ) ) |
2 |
|
qusring.i |
⊢ 𝐼 = ( 2Ideal ‘ 𝑅 ) |
3 |
|
qus1.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
1
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑈 = ( 𝑅 /s ( 𝑅 ~QG 𝑆 ) ) ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
6 |
5
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) |
7 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
8 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
9 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
10 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
11 |
|
eqid |
⊢ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) = ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) |
12 |
9 10 11 2
|
2idlval |
⊢ 𝐼 = ( ( LIdeal ‘ 𝑅 ) ∩ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
13 |
12
|
elin2 |
⊢ ( 𝑆 ∈ 𝐼 ↔ ( 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑆 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) ) |
14 |
13
|
simplbi |
⊢ ( 𝑆 ∈ 𝐼 → 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ) |
15 |
9
|
lidlsubg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) |
16 |
14 15
|
sylan2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) |
17 |
|
eqid |
⊢ ( 𝑅 ~QG 𝑆 ) = ( 𝑅 ~QG 𝑆 ) |
18 |
5 17
|
eqger |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) → ( 𝑅 ~QG 𝑆 ) Er ( Base ‘ 𝑅 ) ) |
19 |
16 18
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → ( 𝑅 ~QG 𝑆 ) Er ( Base ‘ 𝑅 ) ) |
20 |
|
ringabl |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Abel ) |
21 |
20
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑅 ∈ Abel ) |
22 |
|
ablnsg |
⊢ ( 𝑅 ∈ Abel → ( NrmSGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑅 ) ) |
23 |
21 22
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → ( NrmSGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑅 ) ) |
24 |
16 23
|
eleqtrrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑆 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
25 |
5 17 7
|
eqgcpbl |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝑅 ) → ( ( 𝑎 ( 𝑅 ~QG 𝑆 ) 𝑐 ∧ 𝑏 ( 𝑅 ~QG 𝑆 ) 𝑑 ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( 𝑅 ~QG 𝑆 ) ( 𝑐 ( +g ‘ 𝑅 ) 𝑑 ) ) ) |
26 |
24 25
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → ( ( 𝑎 ( 𝑅 ~QG 𝑆 ) 𝑐 ∧ 𝑏 ( 𝑅 ~QG 𝑆 ) 𝑑 ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( 𝑅 ~QG 𝑆 ) ( 𝑐 ( +g ‘ 𝑅 ) 𝑑 ) ) ) |
27 |
5 17 2 8
|
2idlcpbl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → ( ( 𝑎 ( 𝑅 ~QG 𝑆 ) 𝑐 ∧ 𝑏 ( 𝑅 ~QG 𝑆 ) 𝑑 ) → ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( 𝑅 ~QG 𝑆 ) ( 𝑐 ( .r ‘ 𝑅 ) 𝑑 ) ) ) |
28 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
29 |
4 6 7 8 3 19 26 27 28
|
qusring2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → ( 𝑈 ∈ Ring ∧ [ 1 ] ( 𝑅 ~QG 𝑆 ) = ( 1r ‘ 𝑈 ) ) ) |