Step |
Hyp |
Ref |
Expression |
1 |
|
qus2idrng.u |
⊢ 𝑈 = ( 𝑅 /s ( 𝑅 ~QG 𝑆 ) ) |
2 |
|
qus2idrng.i |
⊢ 𝐼 = ( 2Ideal ‘ 𝑅 ) |
3 |
1
|
a1i |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑈 = ( 𝑅 /s ( 𝑅 ~QG 𝑆 ) ) ) |
4 |
|
eqidd |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) |
5 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
7 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
9 |
|
eqid |
⊢ ( 𝑅 ~QG 𝑆 ) = ( 𝑅 ~QG 𝑆 ) |
10 |
8 9
|
eqger |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) → ( 𝑅 ~QG 𝑆 ) Er ( Base ‘ 𝑅 ) ) |
11 |
7 10
|
syl |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝑅 ~QG 𝑆 ) Er ( Base ‘ 𝑅 ) ) |
12 |
|
rngabl |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Abel ) |
13 |
12
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑅 ∈ Abel ) |
14 |
|
ablnsg |
⊢ ( 𝑅 ∈ Abel → ( NrmSGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑅 ) ) |
15 |
13 14
|
syl |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → ( NrmSGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑅 ) ) |
16 |
7 15
|
eleqtrrd |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑆 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
17 |
8 9 5
|
eqgcpbl |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝑅 ) → ( ( 𝑎 ( 𝑅 ~QG 𝑆 ) 𝑐 ∧ 𝑏 ( 𝑅 ~QG 𝑆 ) 𝑑 ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( 𝑅 ~QG 𝑆 ) ( 𝑐 ( +g ‘ 𝑅 ) 𝑑 ) ) ) |
18 |
16 17
|
syl |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → ( ( 𝑎 ( 𝑅 ~QG 𝑆 ) 𝑐 ∧ 𝑏 ( 𝑅 ~QG 𝑆 ) 𝑑 ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( 𝑅 ~QG 𝑆 ) ( 𝑐 ( +g ‘ 𝑅 ) 𝑑 ) ) ) |
19 |
8 9 2 6
|
2idlcpblrng |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → ( ( 𝑎 ( 𝑅 ~QG 𝑆 ) 𝑐 ∧ 𝑏 ( 𝑅 ~QG 𝑆 ) 𝑑 ) → ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( 𝑅 ~QG 𝑆 ) ( 𝑐 ( .r ‘ 𝑅 ) 𝑑 ) ) ) |
20 |
|
simp1 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑅 ∈ Rng ) |
21 |
3 4 5 6 11 18 19 20
|
qusrng |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑈 ∈ Rng ) |