| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qusgrp.h |
⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) ) |
| 2 |
|
qusadd.v |
⊢ 𝑉 = ( Base ‘ 𝐺 ) |
| 3 |
|
qusadd.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 4 |
|
qusadd.a |
⊢ ✚ = ( +g ‘ 𝐻 ) |
| 5 |
1
|
a1i |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) ) ) |
| 6 |
2
|
a1i |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑉 = ( Base ‘ 𝐺 ) ) |
| 7 |
|
nsgsubg |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 8 |
|
eqid |
⊢ ( 𝐺 ~QG 𝑆 ) = ( 𝐺 ~QG 𝑆 ) |
| 9 |
2 8
|
eqger |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝑆 ) Er 𝑉 ) |
| 10 |
7 9
|
syl |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝑆 ) Er 𝑉 ) |
| 11 |
|
subgrcl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 12 |
7 11
|
syl |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 13 |
2 8 3
|
eqgcpbl |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( ( 𝑎 ( 𝐺 ~QG 𝑆 ) 𝑝 ∧ 𝑏 ( 𝐺 ~QG 𝑆 ) 𝑞 ) → ( 𝑎 + 𝑏 ) ( 𝐺 ~QG 𝑆 ) ( 𝑝 + 𝑞 ) ) ) |
| 14 |
2 3
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) → ( 𝑝 + 𝑞 ) ∈ 𝑉 ) |
| 15 |
14
|
3expb |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝑝 + 𝑞 ) ∈ 𝑉 ) |
| 16 |
12 15
|
sylan |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝑝 + 𝑞 ) ∈ 𝑉 ) |
| 17 |
5 6 10 12 13 16 3 4
|
qusaddval |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ✚ [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝑋 + 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) ) |