| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qusaddf.u | ⊢ ( 𝜑  →  𝑈  =  ( 𝑅  /s   ∼  ) ) | 
						
							| 2 |  | qusaddf.v | ⊢ ( 𝜑  →  𝑉  =  ( Base ‘ 𝑅 ) ) | 
						
							| 3 |  | qusaddf.r | ⊢ ( 𝜑  →   ∼   Er  𝑉 ) | 
						
							| 4 |  | qusaddf.z | ⊢ ( 𝜑  →  𝑅  ∈  𝑍 ) | 
						
							| 5 |  | qusaddf.e | ⊢ ( 𝜑  →  ( ( 𝑎  ∼  𝑝  ∧  𝑏  ∼  𝑞 )  →  ( 𝑎  ·  𝑏 )  ∼  ( 𝑝  ·  𝑞 ) ) ) | 
						
							| 6 |  | qusaddf.c | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝑉  ∧  𝑞  ∈  𝑉 ) )  →  ( 𝑝  ·  𝑞 )  ∈  𝑉 ) | 
						
							| 7 |  | qusaddf.p | ⊢  ·   =  ( +g ‘ 𝑅 ) | 
						
							| 8 |  | qusaddf.a | ⊢  ∙   =  ( +g ‘ 𝑈 ) | 
						
							| 9 |  | eqid | ⊢ ( 𝑥  ∈  𝑉  ↦  [ 𝑥 ]  ∼  )  =  ( 𝑥  ∈  𝑉  ↦  [ 𝑥 ]  ∼  ) | 
						
							| 10 |  | fvex | ⊢ ( Base ‘ 𝑅 )  ∈  V | 
						
							| 11 | 2 10 | eqeltrdi | ⊢ ( 𝜑  →  𝑉  ∈  V ) | 
						
							| 12 |  | erex | ⊢ (  ∼   Er  𝑉  →  ( 𝑉  ∈  V  →   ∼   ∈  V ) ) | 
						
							| 13 | 3 11 12 | sylc | ⊢ ( 𝜑  →   ∼   ∈  V ) | 
						
							| 14 | 1 2 9 13 4 | qusval | ⊢ ( 𝜑  →  𝑈  =  ( ( 𝑥  ∈  𝑉  ↦  [ 𝑥 ]  ∼  )  “s  𝑅 ) ) | 
						
							| 15 | 1 2 9 13 4 | quslem | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑉  ↦  [ 𝑥 ]  ∼  ) : 𝑉 –onto→ ( 𝑉  /   ∼  ) ) | 
						
							| 16 | 14 2 15 4 7 8 | imasplusg | ⊢ ( 𝜑  →   ∙   =  ∪  𝑝  ∈  𝑉 ∪  𝑞  ∈  𝑉 { 〈 〈 ( ( 𝑥  ∈  𝑉  ↦  [ 𝑥 ]  ∼  ) ‘ 𝑝 ) ,  ( ( 𝑥  ∈  𝑉  ↦  [ 𝑥 ]  ∼  ) ‘ 𝑞 ) 〉 ,  ( ( 𝑥  ∈  𝑉  ↦  [ 𝑥 ]  ∼  ) ‘ ( 𝑝  ·  𝑞 ) ) 〉 } ) | 
						
							| 17 | 1 2 3 4 5 6 9 16 | qusaddflem | ⊢ ( 𝜑  →   ∙  : ( ( 𝑉  /   ∼  )  ×  ( 𝑉  /   ∼  ) ) ⟶ ( 𝑉  /   ∼  ) ) |