| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							quscrng.u | 
							⊢ 𝑈  =  ( 𝑅  /s  ( 𝑅  ~QG  𝑆 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							quscrng.i | 
							⊢ 𝐼  =  ( LIdeal ‘ 𝑅 )  | 
						
						
							| 3 | 
							
								
							 | 
							crngring | 
							⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring )  | 
						
						
							| 4 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  →  𝑆  ∈  𝐼 )  | 
						
						
							| 5 | 
							
								2
							 | 
							crng2idl | 
							⊢ ( 𝑅  ∈  CRing  →  𝐼  =  ( 2Ideal ‘ 𝑅 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  →  𝐼  =  ( 2Ideal ‘ 𝑅 ) )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							eleqtrd | 
							⊢ ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  →  𝑆  ∈  ( 2Ideal ‘ 𝑅 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							⊢ ( 2Ideal ‘ 𝑅 )  =  ( 2Ideal ‘ 𝑅 )  | 
						
						
							| 9 | 
							
								1 8
							 | 
							qusring | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝑆  ∈  ( 2Ideal ‘ 𝑅 ) )  →  𝑈  ∈  Ring )  | 
						
						
							| 10 | 
							
								3 7 9
							 | 
							syl2an2r | 
							⊢ ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  →  𝑈  ∈  Ring )  | 
						
						
							| 11 | 
							
								1
							 | 
							a1i | 
							⊢ ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  →  𝑈  =  ( 𝑅  /s  ( 𝑅  ~QG  𝑆 ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  →  ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							ovexd | 
							⊢ ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  →  ( 𝑅  ~QG  𝑆 )  ∈  V )  | 
						
						
							| 14 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  →  𝑅  ∈  Ring )  | 
						
						
							| 15 | 
							
								11 12 13 14
							 | 
							qusbas | 
							⊢ ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  →  ( ( Base ‘ 𝑅 )  /  ( 𝑅  ~QG  𝑆 ) )  =  ( Base ‘ 𝑈 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							eleq2d | 
							⊢ ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  →  ( 𝑥  ∈  ( ( Base ‘ 𝑅 )  /  ( 𝑅  ~QG  𝑆 ) )  ↔  𝑥  ∈  ( Base ‘ 𝑈 ) ) )  | 
						
						
							| 17 | 
							
								15
							 | 
							eleq2d | 
							⊢ ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  →  ( 𝑦  ∈  ( ( Base ‘ 𝑅 )  /  ( 𝑅  ~QG  𝑆 ) )  ↔  𝑦  ∈  ( Base ‘ 𝑈 ) ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							anbi12d | 
							⊢ ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  →  ( ( 𝑥  ∈  ( ( Base ‘ 𝑅 )  /  ( 𝑅  ~QG  𝑆 ) )  ∧  𝑦  ∈  ( ( Base ‘ 𝑅 )  /  ( 𝑅  ~QG  𝑆 ) ) )  ↔  ( 𝑥  ∈  ( Base ‘ 𝑈 )  ∧  𝑦  ∈  ( Base ‘ 𝑈 ) ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							⊢ ( ( Base ‘ 𝑅 )  /  ( 𝑅  ~QG  𝑆 ) )  =  ( ( Base ‘ 𝑅 )  /  ( 𝑅  ~QG  𝑆 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							oveq2 | 
							⊢ ( [ 𝑢 ] ( 𝑅  ~QG  𝑆 )  =  𝑦  →  ( 𝑥 ( .r ‘ 𝑈 ) [ 𝑢 ] ( 𝑅  ~QG  𝑆 ) )  =  ( 𝑥 ( .r ‘ 𝑈 ) 𝑦 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							oveq1 | 
							⊢ ( [ 𝑢 ] ( 𝑅  ~QG  𝑆 )  =  𝑦  →  ( [ 𝑢 ] ( 𝑅  ~QG  𝑆 ) ( .r ‘ 𝑈 ) 𝑥 )  =  ( 𝑦 ( .r ‘ 𝑈 ) 𝑥 ) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							eqeq12d | 
							⊢ ( [ 𝑢 ] ( 𝑅  ~QG  𝑆 )  =  𝑦  →  ( ( 𝑥 ( .r ‘ 𝑈 ) [ 𝑢 ] ( 𝑅  ~QG  𝑆 ) )  =  ( [ 𝑢 ] ( 𝑅  ~QG  𝑆 ) ( .r ‘ 𝑈 ) 𝑥 )  ↔  ( 𝑥 ( .r ‘ 𝑈 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝑈 ) 𝑥 ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							oveq1 | 
							⊢ ( [ 𝑣 ] ( 𝑅  ~QG  𝑆 )  =  𝑥  →  ( [ 𝑣 ] ( 𝑅  ~QG  𝑆 ) ( .r ‘ 𝑈 ) [ 𝑢 ] ( 𝑅  ~QG  𝑆 ) )  =  ( 𝑥 ( .r ‘ 𝑈 ) [ 𝑢 ] ( 𝑅  ~QG  𝑆 ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							oveq2 | 
							⊢ ( [ 𝑣 ] ( 𝑅  ~QG  𝑆 )  =  𝑥  →  ( [ 𝑢 ] ( 𝑅  ~QG  𝑆 ) ( .r ‘ 𝑈 ) [ 𝑣 ] ( 𝑅  ~QG  𝑆 ) )  =  ( [ 𝑢 ] ( 𝑅  ~QG  𝑆 ) ( .r ‘ 𝑈 ) 𝑥 ) )  | 
						
						
							| 25 | 
							
								23 24
							 | 
							eqeq12d | 
							⊢ ( [ 𝑣 ] ( 𝑅  ~QG  𝑆 )  =  𝑥  →  ( ( [ 𝑣 ] ( 𝑅  ~QG  𝑆 ) ( .r ‘ 𝑈 ) [ 𝑢 ] ( 𝑅  ~QG  𝑆 ) )  =  ( [ 𝑢 ] ( 𝑅  ~QG  𝑆 ) ( .r ‘ 𝑈 ) [ 𝑣 ] ( 𝑅  ~QG  𝑆 ) )  ↔  ( 𝑥 ( .r ‘ 𝑈 ) [ 𝑢 ] ( 𝑅  ~QG  𝑆 ) )  =  ( [ 𝑢 ] ( 𝑅  ~QG  𝑆 ) ( .r ‘ 𝑈 ) 𝑥 ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 )  | 
						
						
							| 27 | 
							
								
							 | 
							eqid | 
							⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							crngcom | 
							⊢ ( ( 𝑅  ∈  CRing  ∧  𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑢 ( .r ‘ 𝑅 ) 𝑣 )  =  ( 𝑣 ( .r ‘ 𝑅 ) 𝑢 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							ad4ant134 | 
							⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  ∧  𝑢  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑣  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑢 ( .r ‘ 𝑅 ) 𝑣 )  =  ( 𝑣 ( .r ‘ 𝑅 ) 𝑢 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							eceq1d | 
							⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  ∧  𝑢  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑣  ∈  ( Base ‘ 𝑅 ) )  →  [ ( 𝑢 ( .r ‘ 𝑅 ) 𝑣 ) ] ( 𝑅  ~QG  𝑆 )  =  [ ( 𝑣 ( .r ‘ 𝑅 ) 𝑢 ) ] ( 𝑅  ~QG  𝑆 ) )  | 
						
						
							| 31 | 
							
								
							 | 
							ringrng | 
							⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Rng )  | 
						
						
							| 32 | 
							
								3 31
							 | 
							syl | 
							⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Rng )  | 
						
						
							| 33 | 
							
								32
							 | 
							adantr | 
							⊢ ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  →  𝑅  ∈  Rng )  | 
						
						
							| 34 | 
							
								2
							 | 
							lidlsubg | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝑆  ∈  𝐼 )  →  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  | 
						
						
							| 35 | 
							
								3 34
							 | 
							sylan | 
							⊢ ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  →  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  | 
						
						
							| 36 | 
							
								33 7 35
							 | 
							3jca | 
							⊢ ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  →  ( 𝑅  ∈  Rng  ∧  𝑆  ∈  ( 2Ideal ‘ 𝑅 )  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							adantr | 
							⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  ∧  𝑢  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑅  ∈  Rng  ∧  𝑆  ∈  ( 2Ideal ‘ 𝑅 )  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) ) )  | 
						
						
							| 38 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  ∧  𝑢  ∈  ( Base ‘ 𝑅 ) )  →  𝑢  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							anim1i | 
							⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  ∧  𝑢  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑣  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  ( Base ‘ 𝑅 ) ) )  | 
						
						
							| 40 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑅  ~QG  𝑆 )  =  ( 𝑅  ~QG  𝑆 )  | 
						
						
							| 41 | 
							
								
							 | 
							eqid | 
							⊢ ( .r ‘ 𝑈 )  =  ( .r ‘ 𝑈 )  | 
						
						
							| 42 | 
							
								40 1 26 27 41
							 | 
							qusmulrng | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  ( 2Ideal ‘ 𝑅 )  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  ( Base ‘ 𝑅 ) ) )  →  ( [ 𝑢 ] ( 𝑅  ~QG  𝑆 ) ( .r ‘ 𝑈 ) [ 𝑣 ] ( 𝑅  ~QG  𝑆 ) )  =  [ ( 𝑢 ( .r ‘ 𝑅 ) 𝑣 ) ] ( 𝑅  ~QG  𝑆 ) )  | 
						
						
							| 43 | 
							
								37 39 42
							 | 
							syl2an2r | 
							⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  ∧  𝑢  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑣  ∈  ( Base ‘ 𝑅 ) )  →  ( [ 𝑢 ] ( 𝑅  ~QG  𝑆 ) ( .r ‘ 𝑈 ) [ 𝑣 ] ( 𝑅  ~QG  𝑆 ) )  =  [ ( 𝑢 ( .r ‘ 𝑅 ) 𝑣 ) ] ( 𝑅  ~QG  𝑆 ) )  | 
						
						
							| 44 | 
							
								39
							 | 
							ancomd | 
							⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  ∧  𝑢  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑣  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑣  ∈  ( Base ‘ 𝑅 )  ∧  𝑢  ∈  ( Base ‘ 𝑅 ) ) )  | 
						
						
							| 45 | 
							
								40 1 26 27 41
							 | 
							qusmulrng | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  ( 2Ideal ‘ 𝑅 )  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝑣  ∈  ( Base ‘ 𝑅 )  ∧  𝑢  ∈  ( Base ‘ 𝑅 ) ) )  →  ( [ 𝑣 ] ( 𝑅  ~QG  𝑆 ) ( .r ‘ 𝑈 ) [ 𝑢 ] ( 𝑅  ~QG  𝑆 ) )  =  [ ( 𝑣 ( .r ‘ 𝑅 ) 𝑢 ) ] ( 𝑅  ~QG  𝑆 ) )  | 
						
						
							| 46 | 
							
								37 44 45
							 | 
							syl2an2r | 
							⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  ∧  𝑢  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑣  ∈  ( Base ‘ 𝑅 ) )  →  ( [ 𝑣 ] ( 𝑅  ~QG  𝑆 ) ( .r ‘ 𝑈 ) [ 𝑢 ] ( 𝑅  ~QG  𝑆 ) )  =  [ ( 𝑣 ( .r ‘ 𝑅 ) 𝑢 ) ] ( 𝑅  ~QG  𝑆 ) )  | 
						
						
							| 47 | 
							
								30 43 46
							 | 
							3eqtr4rd | 
							⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  ∧  𝑢  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑣  ∈  ( Base ‘ 𝑅 ) )  →  ( [ 𝑣 ] ( 𝑅  ~QG  𝑆 ) ( .r ‘ 𝑈 ) [ 𝑢 ] ( 𝑅  ~QG  𝑆 ) )  =  ( [ 𝑢 ] ( 𝑅  ~QG  𝑆 ) ( .r ‘ 𝑈 ) [ 𝑣 ] ( 𝑅  ~QG  𝑆 ) ) )  | 
						
						
							| 48 | 
							
								19 25 47
							 | 
							ectocld | 
							⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  ∧  𝑢  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑥  ∈  ( ( Base ‘ 𝑅 )  /  ( 𝑅  ~QG  𝑆 ) ) )  →  ( 𝑥 ( .r ‘ 𝑈 ) [ 𝑢 ] ( 𝑅  ~QG  𝑆 ) )  =  ( [ 𝑢 ] ( 𝑅  ~QG  𝑆 ) ( .r ‘ 𝑈 ) 𝑥 ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							an32s | 
							⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  ∧  𝑥  ∈  ( ( Base ‘ 𝑅 )  /  ( 𝑅  ~QG  𝑆 ) ) )  ∧  𝑢  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑥 ( .r ‘ 𝑈 ) [ 𝑢 ] ( 𝑅  ~QG  𝑆 ) )  =  ( [ 𝑢 ] ( 𝑅  ~QG  𝑆 ) ( .r ‘ 𝑈 ) 𝑥 ) )  | 
						
						
							| 50 | 
							
								19 22 49
							 | 
							ectocld | 
							⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  ∧  𝑥  ∈  ( ( Base ‘ 𝑅 )  /  ( 𝑅  ~QG  𝑆 ) ) )  ∧  𝑦  ∈  ( ( Base ‘ 𝑅 )  /  ( 𝑅  ~QG  𝑆 ) ) )  →  ( 𝑥 ( .r ‘ 𝑈 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝑈 ) 𝑥 ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							expl | 
							⊢ ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  →  ( ( 𝑥  ∈  ( ( Base ‘ 𝑅 )  /  ( 𝑅  ~QG  𝑆 ) )  ∧  𝑦  ∈  ( ( Base ‘ 𝑅 )  /  ( 𝑅  ~QG  𝑆 ) ) )  →  ( 𝑥 ( .r ‘ 𝑈 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝑈 ) 𝑥 ) ) )  | 
						
						
							| 52 | 
							
								18 51
							 | 
							sylbird | 
							⊢ ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  →  ( ( 𝑥  ∈  ( Base ‘ 𝑈 )  ∧  𝑦  ∈  ( Base ‘ 𝑈 ) )  →  ( 𝑥 ( .r ‘ 𝑈 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝑈 ) 𝑥 ) ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							ralrimivv | 
							⊢ ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  →  ∀ 𝑥  ∈  ( Base ‘ 𝑈 ) ∀ 𝑦  ∈  ( Base ‘ 𝑈 ) ( 𝑥 ( .r ‘ 𝑈 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝑈 ) 𝑥 ) )  | 
						
						
							| 54 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑈 )  =  ( Base ‘ 𝑈 )  | 
						
						
							| 55 | 
							
								54 41
							 | 
							iscrng2 | 
							⊢ ( 𝑈  ∈  CRing  ↔  ( 𝑈  ∈  Ring  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑈 ) ∀ 𝑦  ∈  ( Base ‘ 𝑈 ) ( 𝑥 ( .r ‘ 𝑈 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝑈 ) 𝑥 ) ) )  | 
						
						
							| 56 | 
							
								10 53 55
							 | 
							sylanbrc | 
							⊢ ( ( 𝑅  ∈  CRing  ∧  𝑆  ∈  𝐼 )  →  𝑈  ∈  CRing )  |