Step |
Hyp |
Ref |
Expression |
1 |
|
qusgrp.h |
⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) ) |
2 |
|
qusadd.v |
⊢ 𝑉 = ( Base ‘ 𝐺 ) |
3 |
|
quseccl.b |
⊢ 𝐵 = ( Base ‘ 𝐻 ) |
4 |
|
ovex |
⊢ ( 𝐺 ~QG 𝑆 ) ∈ V |
5 |
4
|
ecelqsi |
⊢ ( 𝑋 ∈ 𝑉 → [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ∈ ( 𝑉 / ( 𝐺 ~QG 𝑆 ) ) ) |
6 |
5
|
adantl |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ∈ ( 𝑉 / ( 𝐺 ~QG 𝑆 ) ) ) |
7 |
1
|
a1i |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) ) ) |
8 |
2
|
a1i |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → 𝑉 = ( Base ‘ 𝐺 ) ) |
9 |
4
|
a1i |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐺 ~QG 𝑆 ) ∈ V ) |
10 |
|
nsgsubg |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
11 |
|
subgrcl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
12 |
10 11
|
syl |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
13 |
12
|
adantr |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → 𝐺 ∈ Grp ) |
14 |
7 8 9 13
|
qusbas |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑉 / ( 𝐺 ~QG 𝑆 ) ) = ( Base ‘ 𝐻 ) ) |
15 |
14 3
|
eqtr4di |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑉 / ( 𝐺 ~QG 𝑆 ) ) = 𝐵 ) |
16 |
6 15
|
eleqtrd |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ∈ 𝐵 ) |