Metamath Proof Explorer


Theorem quseccl

Description: Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015)

Ref Expression
Hypotheses qusgrp.h 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) )
qusadd.v 𝑉 = ( Base ‘ 𝐺 )
quseccl.b 𝐵 = ( Base ‘ 𝐻 )
Assertion quseccl ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉 ) → [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 qusgrp.h 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) )
2 qusadd.v 𝑉 = ( Base ‘ 𝐺 )
3 quseccl.b 𝐵 = ( Base ‘ 𝐻 )
4 ovex ( 𝐺 ~QG 𝑆 ) ∈ V
5 4 ecelqsi ( 𝑋𝑉 → [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ∈ ( 𝑉 / ( 𝐺 ~QG 𝑆 ) ) )
6 5 adantl ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉 ) → [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ∈ ( 𝑉 / ( 𝐺 ~QG 𝑆 ) ) )
7 1 a1i ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉 ) → 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) ) )
8 2 a1i ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉 ) → 𝑉 = ( Base ‘ 𝐺 ) )
9 4 a1i ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉 ) → ( 𝐺 ~QG 𝑆 ) ∈ V )
10 nsgsubg ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) )
11 subgrcl ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp )
12 10 11 syl ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐺 ∈ Grp )
13 12 adantr ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉 ) → 𝐺 ∈ Grp )
14 7 8 9 13 qusbas ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉 ) → ( 𝑉 / ( 𝐺 ~QG 𝑆 ) ) = ( Base ‘ 𝐻 ) )
15 14 3 eqtr4di ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉 ) → ( 𝑉 / ( 𝐺 ~QG 𝑆 ) ) = 𝐵 )
16 6 15 eleqtrd ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉 ) → [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ∈ 𝐵 )