Metamath Proof Explorer


Theorem quseccl

Description: Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015) (Proof shortened by AV, 9-Mar-2025)

Ref Expression
Hypotheses qusgrp.h 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) )
qusadd.v 𝑉 = ( Base ‘ 𝐺 )
quseccl.b 𝐵 = ( Base ‘ 𝐻 )
Assertion quseccl ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉 ) → [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 qusgrp.h 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) )
2 qusadd.v 𝑉 = ( Base ‘ 𝐺 )
3 quseccl.b 𝐵 = ( Base ‘ 𝐻 )
4 nsgsubg ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) )
5 subgrcl ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp )
6 4 5 syl ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐺 ∈ Grp )
7 eqid ( 𝐺 ~QG 𝑆 ) = ( 𝐺 ~QG 𝑆 )
8 7 1 2 3 quseccl0 ( ( 𝐺 ∈ Grp ∧ 𝑋𝑉 ) → [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ∈ 𝐵 )
9 6 8 sylan ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉 ) → [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ∈ 𝐵 )