Metamath Proof Explorer


Theorem quseccl0

Description: Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015) Generalization of quseccl for arbitrary sets G . (Revised by AV, 24-Feb-2025)

Ref Expression
Hypotheses quseccl0.e = ( 𝐺 ~QG 𝑆 )
quseccl0.h 𝐻 = ( 𝐺 /s )
quseccl0.c 𝐶 = ( Base ‘ 𝐺 )
quseccl0.b 𝐵 = ( Base ‘ 𝐻 )
Assertion quseccl0 ( ( 𝐺𝑉𝑋𝐶 ) → [ 𝑋 ] 𝐵 )

Proof

Step Hyp Ref Expression
1 quseccl0.e = ( 𝐺 ~QG 𝑆 )
2 quseccl0.h 𝐻 = ( 𝐺 /s )
3 quseccl0.c 𝐶 = ( Base ‘ 𝐺 )
4 quseccl0.b 𝐵 = ( Base ‘ 𝐻 )
5 1 ovexi ∈ V
6 5 ecelqsi ( 𝑋𝐶 → [ 𝑋 ] ∈ ( 𝐶 / ) )
7 6 adantl ( ( 𝐺𝑉𝑋𝐶 ) → [ 𝑋 ] ∈ ( 𝐶 / ) )
8 2 a1i ( ( 𝐺𝑉𝑋𝐶 ) → 𝐻 = ( 𝐺 /s ) )
9 3 a1i ( ( 𝐺𝑉𝑋𝐶 ) → 𝐶 = ( Base ‘ 𝐺 ) )
10 5 a1i ( ( 𝐺𝑉𝑋𝐶 ) → ∈ V )
11 simpl ( ( 𝐺𝑉𝑋𝐶 ) → 𝐺𝑉 )
12 8 9 10 11 qusbas ( ( 𝐺𝑉𝑋𝐶 ) → ( 𝐶 / ) = ( Base ‘ 𝐻 ) )
13 12 4 eqtr4di ( ( 𝐺𝑉𝑋𝐶 ) → ( 𝐶 / ) = 𝐵 )
14 7 13 eleqtrd ( ( 𝐺𝑉𝑋𝐶 ) → [ 𝑋 ] 𝐵 )