Step |
Hyp |
Ref |
Expression |
1 |
|
quseccl0.e |
⊢ ∼ = ( 𝐺 ~QG 𝑆 ) |
2 |
|
quseccl0.h |
⊢ 𝐻 = ( 𝐺 /s ∼ ) |
3 |
|
quseccl0.c |
⊢ 𝐶 = ( Base ‘ 𝐺 ) |
4 |
|
quseccl0.b |
⊢ 𝐵 = ( Base ‘ 𝐻 ) |
5 |
1
|
ovexi |
⊢ ∼ ∈ V |
6 |
5
|
ecelqsi |
⊢ ( 𝑋 ∈ 𝐶 → [ 𝑋 ] ∼ ∈ ( 𝐶 / ∼ ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ) → [ 𝑋 ] ∼ ∈ ( 𝐶 / ∼ ) ) |
8 |
2
|
a1i |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ) → 𝐻 = ( 𝐺 /s ∼ ) ) |
9 |
3
|
a1i |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ) → 𝐶 = ( Base ‘ 𝐺 ) ) |
10 |
5
|
a1i |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ) → ∼ ∈ V ) |
11 |
|
simpl |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ) → 𝐺 ∈ 𝑉 ) |
12 |
8 9 10 11
|
qusbas |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐶 / ∼ ) = ( Base ‘ 𝐻 ) ) |
13 |
12 4
|
eqtr4di |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐶 / ∼ ) = 𝐵 ) |
14 |
7 13
|
eleqtrd |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ) → [ 𝑋 ] ∼ ∈ 𝐵 ) |