Step |
Hyp |
Ref |
Expression |
1 |
|
qusecsub.x |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
qusecsub.n |
⊢ − = ( -g ‘ 𝐺 ) |
3 |
|
qusecsub.r |
⊢ ∼ = ( 𝐺 ~QG 𝑆 ) |
4 |
1
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ 𝐵 ) |
5 |
4
|
anim2i |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝐵 ) ) |
6 |
5
|
adantr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝐵 ) ) |
7 |
1 2 3
|
eqgabl |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑋 ∼ 𝑌 ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑌 − 𝑋 ) ∈ 𝑆 ) ) ) |
8 |
6 7
|
syl |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ∼ 𝑌 ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑌 − 𝑋 ) ∈ 𝑆 ) ) ) |
9 |
1 3
|
eqger |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ∼ Er 𝐵 ) |
10 |
9
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ∼ Er 𝐵 ) |
11 |
|
simprl |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
12 |
10 11
|
erth |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ∼ 𝑌 ↔ [ 𝑋 ] ∼ = [ 𝑌 ] ∼ ) ) |
13 |
|
df-3an |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑌 − 𝑋 ) ∈ 𝑆 ) ↔ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑌 − 𝑋 ) ∈ 𝑆 ) ) |
14 |
|
ibar |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑌 − 𝑋 ) ∈ 𝑆 ↔ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑌 − 𝑋 ) ∈ 𝑆 ) ) ) |
15 |
14
|
adantl |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑌 − 𝑋 ) ∈ 𝑆 ↔ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑌 − 𝑋 ) ∈ 𝑆 ) ) ) |
16 |
13 15
|
bitr4id |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑌 − 𝑋 ) ∈ 𝑆 ) ↔ ( 𝑌 − 𝑋 ) ∈ 𝑆 ) ) |
17 |
8 12 16
|
3bitr3d |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( [ 𝑋 ] ∼ = [ 𝑌 ] ∼ ↔ ( 𝑌 − 𝑋 ) ∈ 𝑆 ) ) |