| Step | Hyp | Ref | Expression | 
						
							| 1 |  | quselbas.e | ⊢  ∼   =  ( 𝐺  ~QG  𝑆 ) | 
						
							| 2 |  | quselbas.u | ⊢ 𝑈  =  ( 𝐺  /s   ∼  ) | 
						
							| 3 |  | quselbas.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 4 | 2 | a1i | ⊢ ( ( 𝐺  ∈  𝑉  ∧  𝑋  ∈  𝑊 )  →  𝑈  =  ( 𝐺  /s   ∼  ) ) | 
						
							| 5 | 3 | a1i | ⊢ ( ( 𝐺  ∈  𝑉  ∧  𝑋  ∈  𝑊 )  →  𝐵  =  ( Base ‘ 𝐺 ) ) | 
						
							| 6 | 1 | ovexi | ⊢  ∼   ∈  V | 
						
							| 7 | 6 | a1i | ⊢ ( ( 𝐺  ∈  𝑉  ∧  𝑋  ∈  𝑊 )  →   ∼   ∈  V ) | 
						
							| 8 |  | simpl | ⊢ ( ( 𝐺  ∈  𝑉  ∧  𝑋  ∈  𝑊 )  →  𝐺  ∈  𝑉 ) | 
						
							| 9 | 4 5 7 8 | qusbas | ⊢ ( ( 𝐺  ∈  𝑉  ∧  𝑋  ∈  𝑊 )  →  ( 𝐵  /   ∼  )  =  ( Base ‘ 𝑈 ) ) | 
						
							| 10 | 9 | eqcomd | ⊢ ( ( 𝐺  ∈  𝑉  ∧  𝑋  ∈  𝑊 )  →  ( Base ‘ 𝑈 )  =  ( 𝐵  /   ∼  ) ) | 
						
							| 11 | 10 | eleq2d | ⊢ ( ( 𝐺  ∈  𝑉  ∧  𝑋  ∈  𝑊 )  →  ( 𝑋  ∈  ( Base ‘ 𝑈 )  ↔  𝑋  ∈  ( 𝐵  /   ∼  ) ) ) | 
						
							| 12 |  | elqsg | ⊢ ( 𝑋  ∈  𝑊  →  ( 𝑋  ∈  ( 𝐵  /   ∼  )  ↔  ∃ 𝑥  ∈  𝐵 𝑋  =  [ 𝑥 ]  ∼  ) ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝐺  ∈  𝑉  ∧  𝑋  ∈  𝑊 )  →  ( 𝑋  ∈  ( 𝐵  /   ∼  )  ↔  ∃ 𝑥  ∈  𝐵 𝑋  =  [ 𝑥 ]  ∼  ) ) | 
						
							| 14 | 11 13 | bitrd | ⊢ ( ( 𝐺  ∈  𝑉  ∧  𝑋  ∈  𝑊 )  →  ( 𝑋  ∈  ( Base ‘ 𝑈 )  ↔  ∃ 𝑥  ∈  𝐵 𝑋  =  [ 𝑥 ]  ∼  ) ) |