Step |
Hyp |
Ref |
Expression |
1 |
|
qusghm.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
qusghm.h |
⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑌 ) ) |
3 |
|
qusghm.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
5 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
6 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
7 |
|
nsgsubg |
⊢ ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ) |
8 |
|
subgrcl |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
9 |
7 8
|
syl |
⊢ ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
10 |
2
|
qusgrp |
⊢ ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |
11 |
2 1 4
|
quseccl |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ∈ ( Base ‘ 𝐻 ) ) |
12 |
11 3
|
fmptd |
⊢ ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐹 : 𝑋 ⟶ ( Base ‘ 𝐻 ) ) |
13 |
2 1 5 6
|
qusadd |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ( +g ‘ 𝐻 ) [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) ) = [ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ] ( 𝐺 ~QG 𝑌 ) ) |
14 |
13
|
3expb |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ( +g ‘ 𝐻 ) [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) ) = [ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ] ( 𝐺 ~QG 𝑌 ) ) |
15 |
|
eceq1 |
⊢ ( 𝑥 = 𝑦 → [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) = [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ) |
16 |
|
ovex |
⊢ ( 𝐺 ~QG 𝑌 ) ∈ V |
17 |
|
ecexg |
⊢ ( ( 𝐺 ~QG 𝑌 ) ∈ V → [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ∈ V ) |
18 |
16 17
|
ax-mp |
⊢ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ∈ V |
19 |
15 3 18
|
fvmpt3i |
⊢ ( 𝑦 ∈ 𝑋 → ( 𝐹 ‘ 𝑦 ) = [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ) |
20 |
19
|
ad2antrl |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑦 ) = [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ) |
21 |
|
eceq1 |
⊢ ( 𝑥 = 𝑧 → [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) = [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) ) |
22 |
21 3 18
|
fvmpt3i |
⊢ ( 𝑧 ∈ 𝑋 → ( 𝐹 ‘ 𝑧 ) = [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) ) |
23 |
22
|
ad2antll |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑧 ) = [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) ) |
24 |
20 23
|
oveq12d |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) = ( [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ( +g ‘ 𝐻 ) [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) ) ) |
25 |
1 5
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ) |
26 |
25
|
3expb |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ) |
27 |
9 26
|
sylan |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ) |
28 |
|
eceq1 |
⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) = [ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ] ( 𝐺 ~QG 𝑌 ) ) |
29 |
28 3 18
|
fvmpt3i |
⊢ ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 → ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = [ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ] ( 𝐺 ~QG 𝑌 ) ) |
30 |
27 29
|
syl |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = [ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ] ( 𝐺 ~QG 𝑌 ) ) |
31 |
14 24 30
|
3eqtr4rd |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) |
32 |
1 4 5 6 9 10 12 31
|
isghmd |
⊢ ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |