Step |
Hyp |
Ref |
Expression |
1 |
|
qusgrp.h |
⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) ) |
2 |
1
|
a1i |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) ) ) |
3 |
|
eqidd |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) |
4 |
|
eqidd |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) ) |
5 |
|
nsgsubg |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
7 |
|
eqid |
⊢ ( 𝐺 ~QG 𝑆 ) = ( 𝐺 ~QG 𝑆 ) |
8 |
6 7
|
eqger |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝑆 ) Er ( Base ‘ 𝐺 ) ) |
9 |
5 8
|
syl |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝑆 ) Er ( Base ‘ 𝐺 ) ) |
10 |
|
subgrcl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
11 |
5 10
|
syl |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
12 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
13 |
6 7 12
|
eqgcpbl |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( ( 𝑎 ( 𝐺 ~QG 𝑆 ) 𝑐 ∧ 𝑏 ( 𝐺 ~QG 𝑆 ) 𝑑 ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ( 𝐺 ~QG 𝑆 ) ( 𝑐 ( +g ‘ 𝐺 ) 𝑑 ) ) ) |
14 |
6 12
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ∈ ( Base ‘ 𝐺 ) ) |
15 |
11 14
|
syl3an1 |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ∈ ( Base ‘ 𝐺 ) ) |
16 |
9
|
adantr |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ∧ 𝑤 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝐺 ~QG 𝑆 ) Er ( Base ‘ 𝐺 ) ) |
17 |
11
|
adantr |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ∧ 𝑤 ∈ ( Base ‘ 𝐺 ) ) ) → 𝐺 ∈ Grp ) |
18 |
|
simpr1 |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ∧ 𝑤 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑢 ∈ ( Base ‘ 𝐺 ) ) |
19 |
|
simpr2 |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ∧ 𝑤 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑣 ∈ ( Base ‘ 𝐺 ) ) |
20 |
17 18 19 14
|
syl3anc |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ∧ 𝑤 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ∈ ( Base ‘ 𝐺 ) ) |
21 |
|
simpr3 |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ∧ 𝑤 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑤 ∈ ( Base ‘ 𝐺 ) ) |
22 |
6 12
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ∈ ( Base ‘ 𝐺 ) ∧ 𝑤 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ( +g ‘ 𝐺 ) 𝑤 ) ∈ ( Base ‘ 𝐺 ) ) |
23 |
17 20 21 22
|
syl3anc |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ∧ 𝑤 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ( +g ‘ 𝐺 ) 𝑤 ) ∈ ( Base ‘ 𝐺 ) ) |
24 |
16 23
|
erref |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ∧ 𝑤 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ( +g ‘ 𝐺 ) 𝑤 ) ( 𝐺 ~QG 𝑆 ) ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ( +g ‘ 𝐺 ) 𝑤 ) ) |
25 |
6 12
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ∧ 𝑤 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ( +g ‘ 𝐺 ) 𝑤 ) = ( 𝑢 ( +g ‘ 𝐺 ) ( 𝑣 ( +g ‘ 𝐺 ) 𝑤 ) ) ) |
26 |
11 25
|
sylan |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ∧ 𝑤 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ( +g ‘ 𝐺 ) 𝑤 ) = ( 𝑢 ( +g ‘ 𝐺 ) ( 𝑣 ( +g ‘ 𝐺 ) 𝑤 ) ) ) |
27 |
24 26
|
breqtrd |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ∧ 𝑤 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ( +g ‘ 𝐺 ) 𝑤 ) ( 𝐺 ~QG 𝑆 ) ( 𝑢 ( +g ‘ 𝐺 ) ( 𝑣 ( +g ‘ 𝐺 ) 𝑤 ) ) ) |
28 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
29 |
6 28
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
30 |
11 29
|
syl |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
31 |
6 12 28
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑢 ) = 𝑢 ) |
32 |
11 31
|
sylan |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑢 ) = 𝑢 ) |
33 |
9
|
adantr |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐺 ~QG 𝑆 ) Er ( Base ‘ 𝐺 ) ) |
34 |
|
simpr |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) → 𝑢 ∈ ( Base ‘ 𝐺 ) ) |
35 |
33 34
|
erref |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) → 𝑢 ( 𝐺 ~QG 𝑆 ) 𝑢 ) |
36 |
32 35
|
eqbrtrd |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑢 ) ( 𝐺 ~QG 𝑆 ) 𝑢 ) |
37 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
38 |
6 37
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑢 ) ∈ ( Base ‘ 𝐺 ) ) |
39 |
11 38
|
sylan |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑢 ) ∈ ( Base ‘ 𝐺 ) ) |
40 |
6 12 28 37
|
grplinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑢 ) ( +g ‘ 𝐺 ) 𝑢 ) = ( 0g ‘ 𝐺 ) ) |
41 |
11 40
|
sylan |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑢 ) ( +g ‘ 𝐺 ) 𝑢 ) = ( 0g ‘ 𝐺 ) ) |
42 |
30
|
adantr |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
43 |
33 42
|
erref |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) → ( 0g ‘ 𝐺 ) ( 𝐺 ~QG 𝑆 ) ( 0g ‘ 𝐺 ) ) |
44 |
41 43
|
eqbrtrd |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑢 ) ( +g ‘ 𝐺 ) 𝑢 ) ( 𝐺 ~QG 𝑆 ) ( 0g ‘ 𝐺 ) ) |
45 |
2 3 4 9 11 13 15 27 30 36 39 44
|
qusgrp2 |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( 𝐻 ∈ Grp ∧ [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑆 ) = ( 0g ‘ 𝐻 ) ) ) |
46 |
45
|
simpld |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |