Step |
Hyp |
Ref |
Expression |
1 |
|
qusgrp2.u |
⊢ ( 𝜑 → 𝑈 = ( 𝑅 /s ∼ ) ) |
2 |
|
qusgrp2.v |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) |
3 |
|
qusgrp2.p |
⊢ ( 𝜑 → + = ( +g ‘ 𝑅 ) ) |
4 |
|
qusgrp2.r |
⊢ ( 𝜑 → ∼ Er 𝑉 ) |
5 |
|
qusgrp2.x |
⊢ ( 𝜑 → 𝑅 ∈ 𝑋 ) |
6 |
|
qusgrp2.e |
⊢ ( 𝜑 → ( ( 𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞 ) → ( 𝑎 + 𝑏 ) ∼ ( 𝑝 + 𝑞 ) ) ) |
7 |
|
qusgrp2.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 + 𝑦 ) ∈ 𝑉 ) |
8 |
|
qusgrp2.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) ∼ ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
9 |
|
qusgrp2.3 |
⊢ ( 𝜑 → 0 ∈ 𝑉 ) |
10 |
|
qusgrp2.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 0 + 𝑥 ) ∼ 𝑥 ) |
11 |
|
qusgrp2.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑁 ∈ 𝑉 ) |
12 |
|
qusgrp2.6 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝑁 + 𝑥 ) ∼ 0 ) |
13 |
|
eqid |
⊢ ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) = ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) |
14 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
15 |
2 14
|
eqeltrdi |
⊢ ( 𝜑 → 𝑉 ∈ V ) |
16 |
|
erex |
⊢ ( ∼ Er 𝑉 → ( 𝑉 ∈ V → ∼ ∈ V ) ) |
17 |
4 15 16
|
sylc |
⊢ ( 𝜑 → ∼ ∈ V ) |
18 |
1 2 13 17 5
|
qusval |
⊢ ( 𝜑 → 𝑈 = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) “s 𝑅 ) ) |
19 |
1 2 13 17 5
|
quslem |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) : 𝑉 –onto→ ( 𝑉 / ∼ ) ) |
20 |
7
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑉 ) |
21 |
4 15 13 20 6
|
ercpbl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑎 ) = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑝 ) ∧ ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑏 ) = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑞 ) ) → ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( 𝑎 + 𝑏 ) ) = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( 𝑝 + 𝑞 ) ) ) ) |
22 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ∼ Er 𝑉 ) |
23 |
22 8
|
erthi |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → [ ( ( 𝑥 + 𝑦 ) + 𝑧 ) ] ∼ = [ ( 𝑥 + ( 𝑦 + 𝑧 ) ) ] ∼ ) |
24 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑉 ∈ V ) |
25 |
22 24 13
|
divsfval |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( ( 𝑥 + 𝑦 ) + 𝑧 ) ) = [ ( ( 𝑥 + 𝑦 ) + 𝑧 ) ] ∼ ) |
26 |
22 24 13
|
divsfval |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) = [ ( 𝑥 + ( 𝑦 + 𝑧 ) ) ] ∼ ) |
27 |
23 25 26
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( ( 𝑥 + 𝑦 ) + 𝑧 ) ) = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) ) |
28 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ∼ Er 𝑉 ) |
29 |
28 10
|
erthi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → [ ( 0 + 𝑥 ) ] ∼ = [ 𝑥 ] ∼ ) |
30 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑉 ∈ V ) |
31 |
28 30 13
|
divsfval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( 0 + 𝑥 ) ) = [ ( 0 + 𝑥 ) ] ∼ ) |
32 |
28 30 13
|
divsfval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑥 ) = [ 𝑥 ] ∼ ) |
33 |
29 31 32
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( 0 + 𝑥 ) ) = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑥 ) ) |
34 |
28 12
|
ersym |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 0 ∼ ( 𝑁 + 𝑥 ) ) |
35 |
28 34
|
erthi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → [ 0 ] ∼ = [ ( 𝑁 + 𝑥 ) ] ∼ ) |
36 |
28 30 13
|
divsfval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 0 ) = [ 0 ] ∼ ) |
37 |
28 30 13
|
divsfval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( 𝑁 + 𝑥 ) ) = [ ( 𝑁 + 𝑥 ) ] ∼ ) |
38 |
35 36 37
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( 𝑁 + 𝑥 ) ) = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 0 ) ) |
39 |
18 2 3 19 21 5 7 27 9 33 11 38
|
imasgrp2 |
⊢ ( 𝜑 → ( 𝑈 ∈ Grp ∧ ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) |
40 |
4 15 13
|
divsfval |
⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 0 ) = [ 0 ] ∼ ) |
41 |
40
|
eqcomd |
⊢ ( 𝜑 → [ 0 ] ∼ = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 0 ) ) |
42 |
41
|
eqeq1d |
⊢ ( 𝜑 → ( [ 0 ] ∼ = ( 0g ‘ 𝑈 ) ↔ ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) |
43 |
42
|
anbi2d |
⊢ ( 𝜑 → ( ( 𝑈 ∈ Grp ∧ [ 0 ] ∼ = ( 0g ‘ 𝑈 ) ) ↔ ( 𝑈 ∈ Grp ∧ ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ) |
44 |
39 43
|
mpbird |
⊢ ( 𝜑 → ( 𝑈 ∈ Grp ∧ [ 0 ] ∼ = ( 0g ‘ 𝑈 ) ) ) |