Metamath Proof Explorer


Theorem qusin

Description: Restrict the equivalence relation in a quotient structure to the base set. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses qusin.u ( 𝜑𝑈 = ( 𝑅 /s ) )
qusin.v ( 𝜑𝑉 = ( Base ‘ 𝑅 ) )
qusin.e ( 𝜑𝑊 )
qusin.r ( 𝜑𝑅𝑍 )
qusin.s ( 𝜑 → ( 𝑉 ) ⊆ 𝑉 )
Assertion qusin ( 𝜑𝑈 = ( 𝑅 /s ( ∩ ( 𝑉 × 𝑉 ) ) ) )

Proof

Step Hyp Ref Expression
1 qusin.u ( 𝜑𝑈 = ( 𝑅 /s ) )
2 qusin.v ( 𝜑𝑉 = ( Base ‘ 𝑅 ) )
3 qusin.e ( 𝜑𝑊 )
4 qusin.r ( 𝜑𝑅𝑍 )
5 qusin.s ( 𝜑 → ( 𝑉 ) ⊆ 𝑉 )
6 ecinxp ( ( ( 𝑉 ) ⊆ 𝑉𝑥𝑉 ) → [ 𝑥 ] = [ 𝑥 ] ( ∩ ( 𝑉 × 𝑉 ) ) )
7 5 6 sylan ( ( 𝜑𝑥𝑉 ) → [ 𝑥 ] = [ 𝑥 ] ( ∩ ( 𝑉 × 𝑉 ) ) )
8 7 mpteq2dva ( 𝜑 → ( 𝑥𝑉 ↦ [ 𝑥 ] ) = ( 𝑥𝑉 ↦ [ 𝑥 ] ( ∩ ( 𝑉 × 𝑉 ) ) ) )
9 8 oveq1d ( 𝜑 → ( ( 𝑥𝑉 ↦ [ 𝑥 ] ) “s 𝑅 ) = ( ( 𝑥𝑉 ↦ [ 𝑥 ] ( ∩ ( 𝑉 × 𝑉 ) ) ) “s 𝑅 ) )
10 eqid ( 𝑥𝑉 ↦ [ 𝑥 ] ) = ( 𝑥𝑉 ↦ [ 𝑥 ] )
11 1 2 10 3 4 qusval ( 𝜑𝑈 = ( ( 𝑥𝑉 ↦ [ 𝑥 ] ) “s 𝑅 ) )
12 eqidd ( 𝜑 → ( 𝑅 /s ( ∩ ( 𝑉 × 𝑉 ) ) ) = ( 𝑅 /s ( ∩ ( 𝑉 × 𝑉 ) ) ) )
13 eqid ( 𝑥𝑉 ↦ [ 𝑥 ] ( ∩ ( 𝑉 × 𝑉 ) ) ) = ( 𝑥𝑉 ↦ [ 𝑥 ] ( ∩ ( 𝑉 × 𝑉 ) ) )
14 inex1g ( 𝑊 → ( ∩ ( 𝑉 × 𝑉 ) ) ∈ V )
15 3 14 syl ( 𝜑 → ( ∩ ( 𝑉 × 𝑉 ) ) ∈ V )
16 12 2 13 15 4 qusval ( 𝜑 → ( 𝑅 /s ( ∩ ( 𝑉 × 𝑉 ) ) ) = ( ( 𝑥𝑉 ↦ [ 𝑥 ] ( ∩ ( 𝑉 × 𝑉 ) ) ) “s 𝑅 ) )
17 9 11 16 3eqtr4d ( 𝜑𝑈 = ( 𝑅 /s ( ∩ ( 𝑉 × 𝑉 ) ) ) )