Step |
Hyp |
Ref |
Expression |
1 |
|
qusin.u |
⊢ ( 𝜑 → 𝑈 = ( 𝑅 /s ∼ ) ) |
2 |
|
qusin.v |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) |
3 |
|
qusin.e |
⊢ ( 𝜑 → ∼ ∈ 𝑊 ) |
4 |
|
qusin.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) |
5 |
|
qusin.s |
⊢ ( 𝜑 → ( ∼ “ 𝑉 ) ⊆ 𝑉 ) |
6 |
|
ecinxp |
⊢ ( ( ( ∼ “ 𝑉 ) ⊆ 𝑉 ∧ 𝑥 ∈ 𝑉 ) → [ 𝑥 ] ∼ = [ 𝑥 ] ( ∼ ∩ ( 𝑉 × 𝑉 ) ) ) |
7 |
5 6
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → [ 𝑥 ] ∼ = [ 𝑥 ] ( ∼ ∩ ( 𝑉 × 𝑉 ) ) ) |
8 |
7
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) = ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ( ∼ ∩ ( 𝑉 × 𝑉 ) ) ) ) |
9 |
8
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) “s 𝑅 ) = ( ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ( ∼ ∩ ( 𝑉 × 𝑉 ) ) ) “s 𝑅 ) ) |
10 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) = ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) |
11 |
1 2 10 3 4
|
qusval |
⊢ ( 𝜑 → 𝑈 = ( ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) “s 𝑅 ) ) |
12 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑅 /s ( ∼ ∩ ( 𝑉 × 𝑉 ) ) ) = ( 𝑅 /s ( ∼ ∩ ( 𝑉 × 𝑉 ) ) ) ) |
13 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ( ∼ ∩ ( 𝑉 × 𝑉 ) ) ) = ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ( ∼ ∩ ( 𝑉 × 𝑉 ) ) ) |
14 |
|
inex1g |
⊢ ( ∼ ∈ 𝑊 → ( ∼ ∩ ( 𝑉 × 𝑉 ) ) ∈ V ) |
15 |
3 14
|
syl |
⊢ ( 𝜑 → ( ∼ ∩ ( 𝑉 × 𝑉 ) ) ∈ V ) |
16 |
12 2 13 15 4
|
qusval |
⊢ ( 𝜑 → ( 𝑅 /s ( ∼ ∩ ( 𝑉 × 𝑉 ) ) ) = ( ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ( ∼ ∩ ( 𝑉 × 𝑉 ) ) ) “s 𝑅 ) ) |
17 |
9 11 16
|
3eqtr4d |
⊢ ( 𝜑 → 𝑈 = ( 𝑅 /s ( ∼ ∩ ( 𝑉 × 𝑉 ) ) ) ) |