| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							qusgrp.h | 
							⊢ 𝐻  =  ( 𝐺  /s  ( 𝐺  ~QG  𝑆 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							qusinv.v | 
							⊢ 𝑉  =  ( Base ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							qusinv.i | 
							⊢ 𝐼  =  ( invg ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							qusinv.n | 
							⊢ 𝑁  =  ( invg ‘ 𝐻 )  | 
						
						
							| 5 | 
							
								
							 | 
							nsgsubg | 
							⊢ ( 𝑆  ∈  ( NrmSGrp ‘ 𝐺 )  →  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							subgrcl | 
							⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝐺  ∈  Grp )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							syl | 
							⊢ ( 𝑆  ∈  ( NrmSGrp ‘ 𝐺 )  →  𝐺  ∈  Grp )  | 
						
						
							| 8 | 
							
								2 3
							 | 
							grpinvcl | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝑉 )  →  ( 𝐼 ‘ 𝑋 )  ∈  𝑉 )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							sylan | 
							⊢ ( ( 𝑆  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  𝑋  ∈  𝑉 )  →  ( 𝐼 ‘ 𝑋 )  ∈  𝑉 )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ ( +g ‘ 𝐻 )  =  ( +g ‘ 𝐻 )  | 
						
						
							| 12 | 
							
								1 2 10 11
							 | 
							qusadd | 
							⊢ ( ( 𝑆  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  𝑋  ∈  𝑉  ∧  ( 𝐼 ‘ 𝑋 )  ∈  𝑉 )  →  ( [ 𝑋 ] ( 𝐺  ~QG  𝑆 ) ( +g ‘ 𝐻 ) [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺  ~QG  𝑆 ) )  =  [ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ] ( 𝐺  ~QG  𝑆 ) )  | 
						
						
							| 13 | 
							
								9 12
							 | 
							mpd3an3 | 
							⊢ ( ( 𝑆  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  𝑋  ∈  𝑉 )  →  ( [ 𝑋 ] ( 𝐺  ~QG  𝑆 ) ( +g ‘ 𝐻 ) [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺  ~QG  𝑆 ) )  =  [ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ] ( 𝐺  ~QG  𝑆 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 )  | 
						
						
							| 15 | 
							
								2 10 14 3
							 | 
							grprinv | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝑉 )  →  ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) )  =  ( 0g ‘ 𝐺 ) )  | 
						
						
							| 16 | 
							
								7 15
							 | 
							sylan | 
							⊢ ( ( 𝑆  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  𝑋  ∈  𝑉 )  →  ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) )  =  ( 0g ‘ 𝐺 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							eceq1d | 
							⊢ ( ( 𝑆  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  𝑋  ∈  𝑉 )  →  [ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ] ( 𝐺  ~QG  𝑆 )  =  [ ( 0g ‘ 𝐺 ) ] ( 𝐺  ~QG  𝑆 ) )  | 
						
						
							| 18 | 
							
								1 14
							 | 
							qus0 | 
							⊢ ( 𝑆  ∈  ( NrmSGrp ‘ 𝐺 )  →  [ ( 0g ‘ 𝐺 ) ] ( 𝐺  ~QG  𝑆 )  =  ( 0g ‘ 𝐻 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantr | 
							⊢ ( ( 𝑆  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  𝑋  ∈  𝑉 )  →  [ ( 0g ‘ 𝐺 ) ] ( 𝐺  ~QG  𝑆 )  =  ( 0g ‘ 𝐻 ) )  | 
						
						
							| 20 | 
							
								13 17 19
							 | 
							3eqtrd | 
							⊢ ( ( 𝑆  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  𝑋  ∈  𝑉 )  →  ( [ 𝑋 ] ( 𝐺  ~QG  𝑆 ) ( +g ‘ 𝐻 ) [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺  ~QG  𝑆 ) )  =  ( 0g ‘ 𝐻 ) )  | 
						
						
							| 21 | 
							
								1
							 | 
							qusgrp | 
							⊢ ( 𝑆  ∈  ( NrmSGrp ‘ 𝐺 )  →  𝐻  ∈  Grp )  | 
						
						
							| 22 | 
							
								21
							 | 
							adantr | 
							⊢ ( ( 𝑆  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  𝑋  ∈  𝑉 )  →  𝐻  ∈  Grp )  | 
						
						
							| 23 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 )  | 
						
						
							| 24 | 
							
								1 2 23
							 | 
							quseccl | 
							⊢ ( ( 𝑆  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  𝑋  ∈  𝑉 )  →  [ 𝑋 ] ( 𝐺  ~QG  𝑆 )  ∈  ( Base ‘ 𝐻 ) )  | 
						
						
							| 25 | 
							
								1 2 23
							 | 
							quseccl | 
							⊢ ( ( 𝑆  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐼 ‘ 𝑋 )  ∈  𝑉 )  →  [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺  ~QG  𝑆 )  ∈  ( Base ‘ 𝐻 ) )  | 
						
						
							| 26 | 
							
								9 25
							 | 
							syldan | 
							⊢ ( ( 𝑆  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  𝑋  ∈  𝑉 )  →  [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺  ~QG  𝑆 )  ∈  ( Base ‘ 𝐻 ) )  | 
						
						
							| 27 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝐻 )  =  ( 0g ‘ 𝐻 )  | 
						
						
							| 28 | 
							
								23 11 27 4
							 | 
							grpinvid1 | 
							⊢ ( ( 𝐻  ∈  Grp  ∧  [ 𝑋 ] ( 𝐺  ~QG  𝑆 )  ∈  ( Base ‘ 𝐻 )  ∧  [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺  ~QG  𝑆 )  ∈  ( Base ‘ 𝐻 ) )  →  ( ( 𝑁 ‘ [ 𝑋 ] ( 𝐺  ~QG  𝑆 ) )  =  [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺  ~QG  𝑆 )  ↔  ( [ 𝑋 ] ( 𝐺  ~QG  𝑆 ) ( +g ‘ 𝐻 ) [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺  ~QG  𝑆 ) )  =  ( 0g ‘ 𝐻 ) ) )  | 
						
						
							| 29 | 
							
								22 24 26 28
							 | 
							syl3anc | 
							⊢ ( ( 𝑆  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  𝑋  ∈  𝑉 )  →  ( ( 𝑁 ‘ [ 𝑋 ] ( 𝐺  ~QG  𝑆 ) )  =  [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺  ~QG  𝑆 )  ↔  ( [ 𝑋 ] ( 𝐺  ~QG  𝑆 ) ( +g ‘ 𝐻 ) [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺  ~QG  𝑆 ) )  =  ( 0g ‘ 𝐻 ) ) )  | 
						
						
							| 30 | 
							
								20 29
							 | 
							mpbird | 
							⊢ ( ( 𝑆  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  𝑋  ∈  𝑉 )  →  ( 𝑁 ‘ [ 𝑋 ] ( 𝐺  ~QG  𝑆 ) )  =  [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺  ~QG  𝑆 ) )  |