Step |
Hyp |
Ref |
Expression |
1 |
|
qusgrp.h |
⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) ) |
2 |
|
qusinv.v |
⊢ 𝑉 = ( Base ‘ 𝐺 ) |
3 |
|
qusinv.i |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
4 |
|
qusinv.n |
⊢ 𝑁 = ( invg ‘ 𝐻 ) |
5 |
|
nsgsubg |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
6 |
|
subgrcl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
7 |
5 6
|
syl |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
8 |
2 3
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝑉 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝑉 ) |
9 |
7 8
|
sylan |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝑉 ) |
10 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
11 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
12 |
1 2 10 11
|
qusadd |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ] ( 𝐺 ~QG 𝑆 ) ) |
13 |
9 12
|
mpd3an3 |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ] ( 𝐺 ~QG 𝑆 ) ) |
14 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
15 |
2 10 14 3
|
grprinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
16 |
7 15
|
sylan |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
17 |
16
|
eceq1d |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → [ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ] ( 𝐺 ~QG 𝑆 ) = [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑆 ) ) |
18 |
1 14
|
qus0 |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑆 ) = ( 0g ‘ 𝐻 ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑆 ) = ( 0g ‘ 𝐻 ) ) |
20 |
13 17 19
|
3eqtrd |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ) = ( 0g ‘ 𝐻 ) ) |
21 |
1
|
qusgrp |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |
22 |
21
|
adantr |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → 𝐻 ∈ Grp ) |
23 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
24 |
1 2 23
|
quseccl |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ) |
25 |
1 2 23
|
quseccl |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝑉 ) → [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ) |
26 |
9 25
|
syldan |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ) |
27 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
28 |
23 11 27 4
|
grpinvid1 |
⊢ ( ( 𝐻 ∈ Grp ∧ [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ∧ [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ) → ( ( 𝑁 ‘ [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ↔ ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ) = ( 0g ‘ 𝐻 ) ) ) |
29 |
22 24 26 28
|
syl3anc |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑁 ‘ [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ↔ ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ) = ( 0g ‘ 𝐻 ) ) ) |
30 |
20 29
|
mpbird |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ) |