Metamath Proof Explorer


Theorem quslem

Description: The function in qusval is a surjection onto a quotient set. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses qusval.u ( 𝜑𝑈 = ( 𝑅 /s ) )
qusval.v ( 𝜑𝑉 = ( Base ‘ 𝑅 ) )
qusval.f 𝐹 = ( 𝑥𝑉 ↦ [ 𝑥 ] )
qusval.e ( 𝜑𝑊 )
qusval.r ( 𝜑𝑅𝑍 )
Assertion quslem ( 𝜑𝐹 : 𝑉onto→ ( 𝑉 / ) )

Proof

Step Hyp Ref Expression
1 qusval.u ( 𝜑𝑈 = ( 𝑅 /s ) )
2 qusval.v ( 𝜑𝑉 = ( Base ‘ 𝑅 ) )
3 qusval.f 𝐹 = ( 𝑥𝑉 ↦ [ 𝑥 ] )
4 qusval.e ( 𝜑𝑊 )
5 qusval.r ( 𝜑𝑅𝑍 )
6 ecexg ( 𝑊 → [ 𝑥 ] ∈ V )
7 4 6 syl ( 𝜑 → [ 𝑥 ] ∈ V )
8 7 ralrimivw ( 𝜑 → ∀ 𝑥𝑉 [ 𝑥 ] ∈ V )
9 3 fnmpt ( ∀ 𝑥𝑉 [ 𝑥 ] ∈ V → 𝐹 Fn 𝑉 )
10 8 9 syl ( 𝜑𝐹 Fn 𝑉 )
11 dffn4 ( 𝐹 Fn 𝑉𝐹 : 𝑉onto→ ran 𝐹 )
12 10 11 sylib ( 𝜑𝐹 : 𝑉onto→ ran 𝐹 )
13 3 rnmpt ran 𝐹 = { 𝑦 ∣ ∃ 𝑥𝑉 𝑦 = [ 𝑥 ] }
14 df-qs ( 𝑉 / ) = { 𝑦 ∣ ∃ 𝑥𝑉 𝑦 = [ 𝑥 ] }
15 13 14 eqtr4i ran 𝐹 = ( 𝑉 / )
16 foeq3 ( ran 𝐹 = ( 𝑉 / ) → ( 𝐹 : 𝑉onto→ ran 𝐹𝐹 : 𝑉onto→ ( 𝑉 / ) ) )
17 15 16 ax-mp ( 𝐹 : 𝑉onto→ ran 𝐹𝐹 : 𝑉onto→ ( 𝑉 / ) )
18 12 17 sylib ( 𝜑𝐹 : 𝑉onto→ ( 𝑉 / ) )