Step |
Hyp |
Ref |
Expression |
1 |
|
qusmul.h |
⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) |
2 |
|
qusmul.v |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
qusmul.p |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
qusmul.a |
⊢ × = ( .r ‘ 𝑄 ) |
5 |
|
qusmul.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
6 |
|
qusmul.i |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
7 |
|
qusmul.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
8 |
|
qusmul.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
9 |
1
|
a1i |
⊢ ( 𝜑 → 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) ) |
10 |
2
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
11 |
5
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
12 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
13 |
12
|
lidlsubg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
14 |
11 6 13
|
syl2anc |
⊢ ( 𝜑 → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
15 |
|
eqid |
⊢ ( 𝑅 ~QG 𝐼 ) = ( 𝑅 ~QG 𝐼 ) |
16 |
2 15
|
eqger |
⊢ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → ( 𝑅 ~QG 𝐼 ) Er 𝐵 ) |
17 |
14 16
|
syl |
⊢ ( 𝜑 → ( 𝑅 ~QG 𝐼 ) Er 𝐵 ) |
18 |
12
|
crng2idl |
⊢ ( 𝑅 ∈ CRing → ( LIdeal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) ) |
19 |
5 18
|
syl |
⊢ ( 𝜑 → ( LIdeal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) ) |
20 |
6 19
|
eleqtrd |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
21 |
|
eqid |
⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) |
22 |
2 15 21 3
|
2idlcpbl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) → ( ( 𝑥 ( 𝑅 ~QG 𝐼 ) 𝑦 ∧ 𝑧 ( 𝑅 ~QG 𝐼 ) 𝑡 ) → ( 𝑥 · 𝑧 ) ( 𝑅 ~QG 𝐼 ) ( 𝑦 · 𝑡 ) ) ) |
23 |
11 20 22
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ( 𝑅 ~QG 𝐼 ) 𝑦 ∧ 𝑧 ( 𝑅 ~QG 𝐼 ) 𝑡 ) → ( 𝑥 · 𝑧 ) ( 𝑅 ~QG 𝐼 ) ( 𝑦 · 𝑡 ) ) ) |
24 |
2 3
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) → ( 𝑝 · 𝑞 ) ∈ 𝐵 ) |
25 |
24
|
3expb |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → ( 𝑝 · 𝑞 ) ∈ 𝐵 ) |
26 |
11 25
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → ( 𝑝 · 𝑞 ) ∈ 𝐵 ) |
27 |
26
|
caovclg |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵 ) ) → ( 𝑦 · 𝑡 ) ∈ 𝐵 ) |
28 |
9 10 17 5 23 27 3 4
|
qusmulval |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( [ 𝑋 ] ( 𝑅 ~QG 𝐼 ) × [ 𝑌 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝑋 · 𝑌 ) ] ( 𝑅 ~QG 𝐼 ) ) |
29 |
7 8 28
|
mpd3an23 |
⊢ ( 𝜑 → ( [ 𝑋 ] ( 𝑅 ~QG 𝐼 ) × [ 𝑌 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝑋 · 𝑌 ) ] ( 𝑅 ~QG 𝐼 ) ) |