Metamath Proof Explorer


Theorem qusmul2

Description: Value of the ring operation in a quotient ring. (Contributed by Thierry Arnoux, 1-Sep-2024)

Ref Expression
Hypotheses qusmul2.h 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) )
qusmul2.v 𝐵 = ( Base ‘ 𝑅 )
qusmul2.p · = ( .r𝑅 )
qusmul2.a × = ( .r𝑄 )
qusmul2.1 ( 𝜑𝑅 ∈ Ring )
qusmul2.2 ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
qusmul2.3 ( 𝜑𝑋𝐵 )
qusmul2.4 ( 𝜑𝑌𝐵 )
Assertion qusmul2 ( 𝜑 → ( [ 𝑋 ] ( 𝑅 ~QG 𝐼 ) × [ 𝑌 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝑋 · 𝑌 ) ] ( 𝑅 ~QG 𝐼 ) )

Proof

Step Hyp Ref Expression
1 qusmul2.h 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) )
2 qusmul2.v 𝐵 = ( Base ‘ 𝑅 )
3 qusmul2.p · = ( .r𝑅 )
4 qusmul2.a × = ( .r𝑄 )
5 qusmul2.1 ( 𝜑𝑅 ∈ Ring )
6 qusmul2.2 ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
7 qusmul2.3 ( 𝜑𝑋𝐵 )
8 qusmul2.4 ( 𝜑𝑌𝐵 )
9 1 a1i ( 𝜑𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) )
10 2 a1i ( 𝜑𝐵 = ( Base ‘ 𝑅 ) )
11 6 2idllidld ( 𝜑𝐼 ∈ ( LIdeal ‘ 𝑅 ) )
12 eqid ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 )
13 12 lidlsubg ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) )
14 5 11 13 syl2anc ( 𝜑𝐼 ∈ ( SubGrp ‘ 𝑅 ) )
15 eqid ( 𝑅 ~QG 𝐼 ) = ( 𝑅 ~QG 𝐼 )
16 2 15 eqger ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → ( 𝑅 ~QG 𝐼 ) Er 𝐵 )
17 14 16 syl ( 𝜑 → ( 𝑅 ~QG 𝐼 ) Er 𝐵 )
18 eqid ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 )
19 2 15 18 3 2idlcpbl ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) → ( ( 𝑥 ( 𝑅 ~QG 𝐼 ) 𝑦𝑧 ( 𝑅 ~QG 𝐼 ) 𝑡 ) → ( 𝑥 · 𝑧 ) ( 𝑅 ~QG 𝐼 ) ( 𝑦 · 𝑡 ) ) )
20 5 6 19 syl2anc ( 𝜑 → ( ( 𝑥 ( 𝑅 ~QG 𝐼 ) 𝑦𝑧 ( 𝑅 ~QG 𝐼 ) 𝑡 ) → ( 𝑥 · 𝑧 ) ( 𝑅 ~QG 𝐼 ) ( 𝑦 · 𝑡 ) ) )
21 2 3 ringcl ( ( 𝑅 ∈ Ring ∧ 𝑝𝐵𝑞𝐵 ) → ( 𝑝 · 𝑞 ) ∈ 𝐵 )
22 21 3expb ( ( 𝑅 ∈ Ring ∧ ( 𝑝𝐵𝑞𝐵 ) ) → ( 𝑝 · 𝑞 ) ∈ 𝐵 )
23 5 22 sylan ( ( 𝜑 ∧ ( 𝑝𝐵𝑞𝐵 ) ) → ( 𝑝 · 𝑞 ) ∈ 𝐵 )
24 23 caovclg ( ( 𝜑 ∧ ( 𝑦𝐵𝑡𝐵 ) ) → ( 𝑦 · 𝑡 ) ∈ 𝐵 )
25 9 10 17 5 20 24 3 4 qusmulval ( ( 𝜑𝑋𝐵𝑌𝐵 ) → ( [ 𝑋 ] ( 𝑅 ~QG 𝐼 ) × [ 𝑌 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝑋 · 𝑌 ) ] ( 𝑅 ~QG 𝐼 ) )
26 7 8 25 mpd3an23 ( 𝜑 → ( [ 𝑋 ] ( 𝑅 ~QG 𝐼 ) × [ 𝑌 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝑋 · 𝑌 ) ] ( 𝑅 ~QG 𝐼 ) )